4. Wechselwirkung von Röntgenstrahlung mit Materie 4.1 Brechung von Röntgenstrahlung 4.1.1 Darstellung

Descripción

Fichas sobre 4. Wechselwirkung von Röntgenstrahlung mit Materie 4.1 Brechung von Röntgenstrahlung 4.1.1 Darstellung, creado por Tom Schobert el 26/09/2017.
Tom Schobert
Fichas por Tom Schobert, actualizado hace más de 1 año
Tom Schobert
Creado por Tom Schobert hace alrededor de 7 años
2
0

Resumen del Recurso

Pregunta Respuesta
Komplexe Schreibweise E ̃(r ⃗,t)=E ̃_0 (r ⃗,t) exp⁡〖[i(ωt-k ⃗r ⃗ )]〗 Amplitude E0: Größe Schwingungsauschlag im räumlich/zeitlich Entwicklung Anfangsphase (evtl. selbst zeitabhängig) komplexer Schwingungsterm schnell Oszillation → momentanes E-Feld, momentane Phase auch Variation quer zur Ausbreitungsrichtung Komplexe Brechzahl n ̅=1-δ-iβ δ: Brechzahldekrement; β: Extinktionskoeffizient E ̃(r ⃗,t)=E ̃(0) exp⁡[-2π x/λ β] exp⁡〖[i(ωt-2π x/λ (1-δ)]〗 erster Term: Absorption zweiter Term: Brechung
Absorption I(x)=I_0 exp⁡(-μx); μ=4π/λ β (Lambert-Beersches Absorptionsgesetz, makroskopisches Absorptionskoeffizient) manchmal verschiedene Abschwächmechanismen, meist 1 dominanter Prozess
Brechung Wirkung Medium auf Phasen harte Strahlung δ>0→n<1 Phasengeschwindigkeit im Röntgen höher als Vakuum-Lichtgeschwindigkeit → Gruppengeschwindigkeit v_g<c_0 atomare/ionische Übergangslinien Lorentzmodell für freie und quasifreie Elektronen
1. atomare/ionische Übergangslinien - Herleitung aus atomaren Strukturen - Brechzahl nimmt auf weicher Seite zur Übergangslinie hin zu , auf harter ab o normale Dispersion o innerhalb anormale Dispersion
2. Lorentzmodell für freie und quasifreie Elektronen großer Spektralbereich ohne Linien → Brechzahl von freien Elektronen bestimmt → Plasmafrequenz → Elektronendichte (Brechzahlbeitrag stets <1)
harter Spektralbereich Brechzahldekrement, weit entfernt von Absorptionskanten und Übergangslinien: δ≈(n_a Zν_(e,0))/2π⋅λ² bei 2-50 keV typische Werte: δ=〖10〗^(-5)-〖10〗^(-7) niedrig Z δ deutlich größer als β (3 Größenordnungen) Phase stärker beeinflussbar als Amplitude
Kramers-Kronig-Relation Zusammenhang zwischen δ und β δ(ω)=2/π ∫_0^(∞ )▒〖(ω^' β(ω^' ))/((ω^' )^2-ω²) dω'〗 β(ω)=-2ω/π ∫_0^(∞ )▒〖δ(ω^' )/((ω^' )^2-ω²) dω'〗 eine der beiden Größen berechenbar, wenn andere über gesamten Spektralbereich bekannt δ aus Daten für β , Brechzahl für harte Strahlung schwer zu messen
Mostrar resumen completo Ocultar resumen completo

Similar

ORGANIGRAMA
Sebastian Valencia
FLUJOGRAMA
Elizabeth Alvare
Advanced English Final Exam (C1)
Paulo Cevallos
ANÁLISIS DE DATOS EN LA INVESTIGACIÓN CUALITATIVA
Johanna Morales Genecco
LA REPRODUCCION EN LOS ANIMALES
Liliam Beatriz Meneses Quintero
GEOGRAFIA
ROSA MARIA ARRIAGA
LA METODOLOGÍA DE LAS BASES DE DATOS
Fernando Tapia
TEMA 1.2. LA ESPECIALIDAD FUNDAMENTAL TRANSMISIONES, PRESENTE Y FUTURO
antonio del valle
INGLÉS-Diminutas...
Ulises Yo
LITERATOS...
JL Cadenas