Integrales

Descripción

Identificar el método de integración
Ceci Mendoza
Fichas por Ceci Mendoza, actualizado hace más de 1 año
Ceci Mendoza
Creado por Ceci Mendoza hace más de 6 años
49
1

Resumen del Recurso

Pregunta Respuesta
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
u substitution
algebraic sub
u substitution
u substitution
u substitution
algebraic sub
algebraic sub
u substitution
u substitution
u substitution
u substitution
u substitution
Basic Integral
u substitution
u substitution
u substitution
u substitution
by parts
algebraic sub
u substitution
algebraic sub
algebraic sub
algebraic sub
by parts
u substitution
u substitution
by parts
u substitution
by parts
by parts
algebraic sub
by parts
by parts
by parts
algebraic sub
u substitution
u substitution
Basic Integral
by parts =90u^2
algebraic sub
u substitution
u substitution (caso con 2 "u")
by parts
by parts
by parts
by parts
by parts
by parts
algebraic sub
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
algebraic sub =1.34933 u^2
algebraic sub =0.3214 u^2
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
u substitution
u substitution
u substitution
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers (la otra respuesta con "cos" y signos contrarios)
trigonometric powers (even powers)
trigonometric powers (even powers)
trigonometric powers (even powers)
trigonometric powers = −0.02864 u^2
trigonometric powers
trigonometric powers (even powers)
trigonometric powers
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution (special case)
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
trigonometric powers
trigonometric powers
trigonometric powers = 0.53333 u^2
trigonometric powers
trigonometric powers
trigonometric powers π/4 = 0.785398 u^2
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers π/16= 0.1963 u^2
trigonometric powers π/8= 0.3926 u^2
partial fractions A= 1/2 B= -1/10 C= 1/5
partial fractions A= -1/5 B= 1/5
partial fractions A= -1 B= 2 C= 3
partial fractions
partial fractions A= 2 B= -1
partial fractions A= 1/2 B= -1/2 = -0.896 u^2
partial fractions A= -1/2 B= 1/2
partial fractions A= 1/3 B= -2/3
partial fractions A= -2 B= 5
partial fractions A= 5 B= -2
partial fractions A= 1/6 B= -1/6
partial fractions A= 1/10 B= -1/10
partial fractions A= 5/8 B= 3/8
partial fractions A= 1/15 B= 3/5 C= -2/3
partial fractions A= -1/2 B= 1/2
partial fractions A= -1/3 B= 1/3
partial fractions A= 2/3 B= -1/3 [2/3ln(x+2) -1/6ln(2x+1)+c]
partial fractions A= 12/7 B= -5/7
partial fractions A= 6 B= -3/2 C= -7/2
partial fractions A= -1/4 B= 19/8 C= 23/8
partial fractions A= -1/4 B= 2 C= -7/4
Mostrar resumen completo Ocultar resumen completo

Similar

Ecuaciones (Primer Grado)
Diego Santos
Fórmulas Geométricas (Perímetros)
Diego Santos
7 Técnicas para Aprender Matemáticas
maya velasquez
Matemáticasen la VidaCotidiana
Diego Santos
FRACCIONES...
JL Cadenas
FRACCIONES...
Ulises Yo
Factorización de expresiones algebraicas_1
Juan Beltran
CÁLCULOS con [ 3 · 5 · 7 ]
JL Cadenas
Preguntas del Pensamiento Matemático
Diego Santos
Factorización de Expresiones Algebráicas
maya velasquez
Matrices y Determinantes
Diego Santos