Machine Learning SS2018

Descripción

Some learning resources for the ML lecture in summer semester 2018, Uni Hamburg
Yang Li
Fichas por Yang Li, actualizado hace más de 1 año
Yang Li
Creado por Yang Li hace más de 6 años
5
0

Resumen del Recurso

Pregunta Respuesta
Overfitting > Explains all training points very well or even exactly > Tends to be very complicated and models the noise as well > Predictions for unseen data points are poor (large test error) > Low approximation error, high estimation error
Underfitting > Too simplistic > Estimated functions are stable with respect to noise > Large approximation error, low estimation error
Supervised learning > Input-output pairs (Xi, Yi) given as training data > Goal: "Learn" the function f: Xi -> Yi > A teacher tells us what the true outcome should be on the given samples > Tasks: Classification, Regression
Unsupervised learning > Given: Input values Xi, but no output values > Learner is supposed to learn the "structure" of the inputs > Tasks: Clustering, Outlier detection
Semi-supervised learning > Given: Many input values X1, ..., Xu (unlabeled points) and some input-output pairs (Xi, Yi) (labeled points) > Goal (same as supervised learning): Predict function f: Xi -> Yi > Unsupervised part: Exploit extra knowledge gained from unlabeled points
Mostrar resumen completo Ocultar resumen completo

Similar

Python. Exercises. MatplotLib I
María Marchante
Machine Learning. Seaborn Exercises
María Marchante
Python. Pandas I
María Marchante
Machine Learning
Ali Poursotoudeh Tehrani
Biología
Danitza Méndez
FUNDAMENTOS DE REDES DE COMPUTADORAS
anhita
CIENCIAS AUXILIARES DE QUÍMICA ORGÁNICA
Luis Carrillo
Mecanismos de cohesión
Diego Santos
Principios de Psicología
anrago63
Mapas mentales con GoConqr
maya velasquez
Test de Ecuaciones Bicuadradas
MANUEL LUIS PÉREZ SALAZAR