"DISTRIBUCIONES DE PROBABILIDAD DISCRETAS"

Descripción

Una variable aleatoria X es toda función que toma diversos valores numéricos (dependientes del resultado de un fenómeno aleatorio) con distintas probabilidades
JOSE ANTONIO ALVIRO MORENO
Fichas por JOSE ANTONIO ALVIRO MORENO, actualizado hace más de 1 año
JOSE ANTONIO ALVIRO MORENO
Creado por JOSE ANTONIO ALVIRO MORENO hace alrededor de 6 años
30
0

Resumen del Recurso

Pregunta Respuesta
"variable aleatoria discreta" En general diremos, que una variable aleatoria discreta estará identificada si conocemos sus posibles valores X = {x1,x2 ,...,xn} y sus respectivas probabilidades P(X = xi ) = Pi
función de probabilidad A toda regla que permita asociar a cada valor xi de la variable aleatoria su probabilidad Pi, la llamaremos "función de probabilidad".
"distribución de probabilidad" De un modo general, a toda tabla, gráfica o expresión matemática que indique los valores que puede tomar una variable aleatoria y las probabilidades con que los toma, se llamará "distribución de probabilidad de dicha variable aleatoria"
Esperanza, varianza y desviación típica de una variable aleatoria Se llama esperanza de la variable aleatoria discreta X, al número: E[X] = x1p1 + x2p2 +...+xnpn x1, x2 ,. .., xn son los valores de la variable aleatoria y p1, p2, ..., pn las probabilidades respectivas.
Distribución Binomial Diremos que un experimento sigue un modelo binomial si, en cada ejecución, sólo hay dos posibles resultados (E y F), las pruebas son independientes y la probabilidad de éxito es constante.
Distribución de Poisson 1- Debemos tener un fenómeno dicotómico (ocurrencia o no de un determinado suceso). 2- Las pruebas que se realicen han de ser independientes y la probabilidad de éxito se ha de mantener constante en todas ellas. 3- Los sucesos han de ser poco comunes, por eso se le conoce como "Ley de los sucesos raros". 4- Puesto que la probabilidad de éxito ha de ser pequeña, entendemos que p<0.05 y puesto que n ha de ser grande, entendemos n>100. 5- Los sucesos ocurren en un intervalo de tiempo. 6- Se caracteriza por un parámetro ! , que es el número medio de ocurrencia del suceso aleatorio por unidad de tiempo. 7- Siempre que la media y l
Distribución Hipergeométrica Sea N el número de profesores de un Centro de Enseñanza Secundaria que deben elegir Director entre dos candidatos A y B. Sea n el número de profesores que apoyan al candidato A y N-n el número de profesores que apoyan al candidato B. Supongamos que queremos hacer un sondeo antes de la votación final, tomamos una muestra con K profesores y le preguntamos el candidato al que piensan votar. Supongamos que X es la variable aleatoria que nos mide el número de profesores de la muestra que piensan votar al candidato A. El interés está en calcular la probabilidad de que X=r, es decir, que en la muestra haya r personas que piensan votar al candidato A.
Esperanza, varianza y desviación típica de una variable aleatoria Se llama esperanza de la variable aleatoria discreta X, al número: E[X] = x1p1 + x2p2 +...+xnpn x1, x2 ,. .., xn son los valores de la variable aleatoria y p1, p2, ..., pn las probabilidades respectivas
Distribución Binomial Diremos que un experimento sigue un modelo binomial si, en cada ejecución, sólo hay dos posibles resultados (E y F), las pruebas son independientes y la probabilidad de éxito es constante
Distribución de Poisson 1- Debemos tener un fenómeno dicotómico (ocurrencia o no de un determinado suceso). 2- Las pruebas que se realicen han de ser independientes y la probabilidad de éxito se ha de mantener constante en todas ellas. 3- Los sucesos han de ser poco comunes, por eso se le conoce como "Ley de los sucesos raros". 4- Puesto que la probabilidad de éxito ha de ser pequeña, entendemos que p<0.05 y puesto que n ha de ser grande, entendemos n>100. 5- Los sucesos ocurren en un intervalo de tiempo. 6- Se caracteriza por un parámetro ! , que es el número medio de ocurrencia del suceso aleatorio por unidad de tiempo. 7- Siempre que la media y la varianza sean similares, podemos pensar en un modelo de Poisson.
Distribución Hipergeométrica Sea N el número de profesores de un Centro de Enseñanza Secundaria que deben elegir Director entre dos candidatos A y B. Sea n el número de profesores que apoyan al candidato A y N-n el número de profesores que apoyan al candidato B. Supongamos que queremos hacer un sondeo antes de la votación final, tomamos una muestra con K profesores y le preguntamos el candidato al que piensan votar. Supongamos que X es la variable aleatoria que nos mide el número de profesores de la muestra que piensan votar al candidato A. El interés está en calcular la probabilidad de que X=r, es decir, que en la muestra haya r personas que piensan votar al candidato A.
Mostrar resumen completo Ocultar resumen completo

Similar

Variables aleatorias y distribución de probabilidad- UNIDAD 2
YULIS MONTES
TIPOS DE DISTRIBUCIÓN DE FRECUENCIA
veronica Ortega5607
Segundo test
asanchez9908
Variables aleatorias y distribución de probabilidad- UNIDAD 2
Manuel Camacho
Variables aleatorias y distribución de probabilidad- UNIDAD 2
SENA M.M.H.F
Variables aleatorias y distribución de probabilidad- UNIDAD 2
Angela Patricia Garcia Villada
Variables aleatorias
Oscar Barreiro
Variables aleatorias y distribución de probabilidad- UNIDAD 2
Jeisson Chaparro B
Variables aleatorias
Oscar Barreiro
TIPOS DE DISTRIBUCIÓN DE FRECUENCIA_1
veronica Ortega5607
TIPOS DE DISTRIBUCIÓN DE FRECUENCIA
Andrea De Vasconcelos