Dérivées

Descripción

Fichas sobre Dérivées, creado por Leonard Euler el 20/12/2014.
Leonard Euler
Fichas por Leonard Euler, actualizado hace más de 1 año
Leonard Euler
Creado por Leonard Euler hace casi 10 años
21
0

Resumen del Recurso

Pregunta Respuesta
\[\dfrac{d}{dx} c\] \[0\]
\[\dfrac{d}{dx} x\] \[1\]
\[\dfrac{d}{dx} x^2\] \[2x\]
\[\dfrac{d}{dx} x^3\] \[3x^2\]
\[\dfrac{d}{dx} x^k\] \[k\cdot x^{k-1}\]
\[\dfrac{d}{dx} \dfrac{1}{x}\] \[-\dfrac{1}{x^2}\]
\[\dfrac{d}{dx} \sqrt{x}\] \[\dfrac{1}{2\sqrt{x}}\]
\[(\lambda\cdot u)'\] \[\lambda\cdot u'\]
\[(u+v)'\] \[u'+v'\]
\[(u\cdot v)'\] \[u'\cdot v+u\cdot v'\]
\[\Big(\dfrac{1}{u}\Big)'\] \[-\dfrac{u'}{u^2}\]
\[\Big(\dfrac{u}{v}\Big)'\] \[\dfrac{u'\cdot v-u\cdot v'}{v^2}\]
\[(u\circ v)'\] \[(u' \circ v)\cdot v'\]
\[(\sqrt{u})'\] \[\dfrac{u'}{2\sqrt{u}}\]
\[(u^k)'\] \[k\cdot u^{k-1}\cdot u'\]
\[\dfrac{d}{dx} \sin{x}\] \[\cos{x}\]
\[\dfrac{d}{dx} \cos{x}\] \[-\sin{x}\]
\[\dfrac{d}{dx} \tan{x}\] \[1+\tan^2{x}=\dfrac{1}{\cos^2{x}}\]
\[(\sin{u})'\] \[u'\cdot \cos{u}\]
\[(\cos{u})'\] \[-u'\cdot \sin{u}\]
\[(\tan{u})'\] \[u'\cdot(1+\tan^2{u})=\dfrac{u'}{\cos^2{u}}\]
\[\dfrac{d}{dx} e^x\] \[e^x\]
\[\dfrac{d}{dx} \ln{x}\] \[\dfrac{1}{x}\]
\[(e^u)'\] \[u'\cdot e^u\]
\[(\ln{u})'\] \[\dfrac{u'}{u}\]
Mostrar resumen completo Ocultar resumen completo

Similar

Ecuaciones (Primer Grado)
Diego Santos
7 Técnicas para Aprender Idiomas
maya velasquez
Readings para Preparar el First Certificate
Diego Santos
Cómo Escribir texto en inglés
maya velasquez
5 Pasos para el Éxito en el Aprendizaje_2
Diego Santos
Mapa conceptual
Daniela Trujillo5510
Advanced English Final Exam (C1)
Paulo Cevallos
Inglés
maya velasquez
Poniendo en Práctica el Aprendizaje Basado en Problemas
Diego Santos
Matematicas exanii-ii
Monica Sanchez8667
Biologia molecular y genetica
Mizore Ai