evaluating locally linear systems (stability, type, phase portrait)

Descripción

We want to solve x' = Ax. If detA =/= 0, then the origin is the only critical point. The following are different classifications of the zero vector for type and stability with corresponding phase portraits.
Georgie D'Sanson
Fichas por Georgie D'Sanson, actualizado hace más de 1 año
Georgie D'Sanson
Creado por Georgie D'Sanson hace alrededor de 5 años
36
0

Resumen del Recurso

Pregunta Respuesta
r1 < 0 < r2 (real and distinct eigenvalues r1, r2)
0 < r1 < r2 (real and distinct eigenvalues r1, r2) nodal source
r1 < r2 < 0 (real and distinct eigenvalues r1, r2) nodal sink
λ = 0 (r1,r2 are complex conjugates r1 = λ + iμ)
λ > 0 (r1,r2 are complex conjugates r1 = λ + iμ) spiral source
λ < 0 (r1,r2 are complex conjugates r1 = λ + iμ) spiral sink
r > 0 (r1 = r2, 1 linearly independent eigenvector) (source)
r < 0 (r1 = r2, 1 linearly independent eigenvector) (sink)
r > 0 (r1 = r2, 2 linearly independent eigenvectors) star node (source) unstable
r < 0 (r1 = r2, 2 linearly independent eigenvectors) star node (sink) asymptotically stable
Mostrar resumen completo Ocultar resumen completo

Similar

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
C2 - Formulae to learn
Tech Wilkinson
C1 - Formulae to learn
Tech Wilkinson
Mathematics Overview
PatrickNoonan
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary