Microeconomics I

Descripción

Graduate-level flascards for microeconomics
Max Schnidman
Fichas por Max Schnidman, actualizado hace más de 1 año
Max Schnidman
Creado por Max Schnidman hace alrededor de 5 años
20
0

Resumen del Recurso

Pregunta Respuesta
Choice Structure Collection of choice sets and choice rule. \[\mathcal{B}, C(\cdot)\]
Weak Axiom of Revealed Preference (Choice Structure) A choice structure satisfies WARP if for some \[B \in \mathcal{B}: x,y \in B, x\in C(B)\] then for any \[B^\prime \in \mathcal{B}: x,y \in B^\prime, y\in C(B^\prime) \implies x \in C(B^\prime\]
Preference Relations At least as good: \[\succeq\] Strictly preferred: \[\succ\] Indifferent: \[\sim\]
Rationality 1. Completeness: \[\forall x,y \in X, x\succeq y \ or \ y \succeq x\] 2. Transitivity: \[\forall x, y, z \in X, x\succeq y \ and \ y \succeq z \implies x \succeq z\]
Arrow's Theorem If a choice set satisfies WARP, and the choice set includes all subsets of X with up to 3 elements, then a unique rational preference relation exists.
Relation between WARP and Rationality Rationality implies WARP, but not the converse.
Monotone Preferences \[y > > x \implies y \succ x\]
Strictly Monotone Preferences \[y\ge x, y \ne x \implies y \succ x\]
Local nonsatiation \[\forall x, \epsilon \ge 0, \exists y \ s.t. \ ||y-x||\le \epsilon, y\succ x\]
Indifference Curves \[UC(x) = \{y\in x, y\succeq x\}\] \[LC(x) = \{y\in x, x\succeq y\}\] \[IC(x) = \{y\in x, y\sim x\}\]
Convexity of Preferences \[\forall x \in X, y \succeq z, z\succeq x \implies \alpha y + (1-\alpha) z \succeq x\]
Homothetic Preferences \[x\sim y \implies \alpha x \sim \alpha y\]
Quasilinear Preferences \[1. (t,y) \succ (t^\prime, y) \forall t> t^\prime\] \[2. (t,y) \succ (t^\prime, y) \implies (t + d,y) \succ (t^\prime + d, y)\]
Continuous Preferences \[x_n \succeq y_n \implies x \succeq y\] \[IC = UC \cap LC\]
Lexiographic Preferences \[x \succeq y \ if\] \[1. x_1 > y_1\] \[2. x_1 = y_1, x_2 \ge y_2\] Cannot be represented by utility function
Utility Function 1. Ordinal (except under lotteries) 2. Not unique 3. Requires rational, continuous preferences
Marginal Rate of Stubstitution \[-\frac{\frac{\delta u}{\delta x_1}}{\frac{\delta u}{\delta x_2}}\] Representation-Agnostic
Relations between Preferences and Utility Functions 1. Continuous preferences imply a continuous function. 2. Monotone preferences imply monotone utility functions 3. Convex preferences imply quasi-concave utility functions 4. Homothetic preference imply HD-1 Utility functions
Separable Preferences \[(x, y) \succeq (x^\prime, y) \equiv (x, y^\prime) \succeq (x^\prime, y^\prime)\]
Strongly Separable Preferences \[u(x_0, ..., x_n) = u_1(x_0, x_1) + u_2(x_2, ..., x_n)\]
Additive Preferences \[u(x_0, ..., x_n) = u(x_1) + ... + u(x_n)\]
Quasi-linear Utility \[u(x_1,...,x_n) = x_1 + u(x_2,...,x_n)\]
Budget Set \[B_{p,w} = \{x\in X, px \le w\}\] Typically convex
Utility Maximization Problem \[\underset{x\in R}{max} u(x) \ s.t. \ px \le w\]
Marshallian/Walrasian Demand \[x(p,w) = argmax u(x) \ s.t. \ px \le w\]
Indirect Utility Function \[V(p,w) = max u(x) = u(x(p,w))\]
Properties of U() 1. If Prices are strictly positive and U is continuous, a solution to the UMP exists. 2. If preferences are LNS, Budget is fully exhausted (constraint binds at equality) \[3. \frac{\delta v}{\delta w} = \lambda\]
Properties of Indirect Utility 1. V is HD-0 in p,w 2. V is non-increasing in p and non-decreasing in w 3. V is continuous in p,w 4. V is quasiconvex in p,w
Properties of Walrasian Demand 1. X is HD-0 \[2. px = w \forall x \in x(p,w)\] (Walras's Law) 3. If U is quasi-concave, X is a convex set. If U is strictly quasi-concave, X is singleton
Roy's Identity \[x_i(p,w) = -\frac{\frac{\delta v(p,w)}{\delta p_i}}{\frac{\delta v(p,w)}{\delta w}}\]
Expenditure Minimization Problem \[\underset{x \in R^+}{min} px \ s.t. \ u(x) \ge \Bar{u}\]
Hicksian (Compensated) Demand \[h(p, \Bar{u}) = argmin px s.t. \ u(x) \ge \Bar{u}\]
Expenditure Function \[e(p, \Bar{u}) = min px = ph\]
Properties of Expenditure Function 1. Non-decreasing in p 2. Strictly increasing in utility 3. HD-1 in p 4. Concave in p 5. Continuous in (p,u)
Shephard's Lemma for EMP \[\frac{\delta e}{\delta p_i} = h(p_i, \Bar{u})\]
Dualities of Consumer Theory \[1. e(p, v(p,w)) = w\] \[2. v(p, e(p, \Bar{u})) = \Bar{u}\] \[3. x_i(p, e) = h_i(p, \Bar{u})\] \[4. h_i(p, v(p,w)) = x_i(p,w)\]
Money Metric Utility Function \[w(p,x) = e(p,u(x))\]
Money-Metric Indirect Utility Function \[\mu(p,q,w) = e(p, v(q,w))\]
Normal Good \[\frac{\delta x_i}{\delta w} > 0\]
Inferior Good \[\frac{\delta x_i}{\delta w} < 0\]
Luxury Good \[\epsilon_{i,w} = \frac{\delta ln(x_i)}{\delta ln(w)} > 1\]
Necessity Good \[\epsilon_{i,w} = \frac{\delta ln(x_i)}{\delta ln(w)} < 1\]
Homothetic Preferences in Utility \[\epsilon_{i,w} = \frac{\delta ln(x_i)}{\delta ln(w)} = 1\]
Law of Demand \[\frac{\delta x_i}{\delta p_1} \le 0\]
Giffen Good \[\frac{\delta x_i}{\delta p_1} > 0\]
Slutsky Equation \[\frac{\delta x_i(p,w)}{\delta p_k} = \frac{\delta h_i(p,v(p,w))}{\delta p_k} - \frac{\delta x_i(p,w)}{\delta w}x_k(p,w)\]
Substitute Goods \[\frac{\delta h_i(p,v(p,w))}{\delta p_k} \ge 0\] Gross if unequal
Complement Goods \[\frac{\delta h_i(p,v(p,w))}{\delta p_k} \le 0\] Gross if unequal
Slutsky Substitution Matrix \[Dh(p)\] Symmetric NSD \[\frac{\delta h_i}{\delta p_i} \le 0\]
Equivalent Variation \[e(p^0, u^1) - e(p^0, u^0) \equiv e(p^0, u^1) - m \equiv \int_{p^0}^{p^1} h_1(p, u^1) dp\]
Compensating Variation \[e(p^1, u^1) - e(p^1, u^0) \equiv m - e(p^1, u^0) \equiv \int_{p^0}^{p^1} h_0(p, u^0) dp\]
Change in Consumer Surplus \[\int_{p^1}^{p^0} x_i(p, w) dp\]
Relationship between measures of Welfare Evaluation for normal goods \[CV \le \Delta CS \le EV\] Flip for Inferior Goods Equal for Quasilinear Preferences
Laspeyres Index \[\frac{p^1x^0}{p^0x^0} = L(p^0, p^1, x^0)\] Overstates compensation relative to expenditure function
Passche Index \[\frac{p^1x^1}{p^0x^1} = P(p^0, p^1, x^0)\] Understates compensation relative to expenditure function
Aggregate Demand (Consumer Theory) \[\bar{x}_i(p, w_1, ..., w_n) = \sum x_k^i(p, w_1)\]
Gorman Form \[V^i(p, w_i) = a^i(p) + b(p)w_i\]
Social Welfare Function Assigns a number to each utility profile
Direct Revealed Preference \[x^tR^Dz: p^tx^t \ge p^tz\]
Strictly Direct Revealed Preference \[x^tp^Dz: p^tx^t > p^tz\]
Weak Axiom of Revealed Preference (Preference Relations) \[x^tR^Dx^s \implies \sim x^sR^Dx^t\] \[p^tx^s \le p^tx^t \implies p^sx^t > p^sx^s\]
Indirect Revealed Preference \[x^1R^Dx^2, ...x^{n-1}R^Dx^n \implies x^1Rx^n\]
Generalized Axiom of Revealed Preference \[x^tRx^s \not\implies x^sP^Dx^t\] \[x^tRx^s \implies p^sx^t \ge p^sx^s\]
Afirat's Theorem A finite set of demand data satisfies GARP iff a continuous, monotonic, and concave utility function rationalizes the data.
Lottery Probability vector: \[L = (p_1, ..., p_n), p_1 \ge 0, \sum p_i = 1\]
Compound Lotteries Lottery over Lotteries
Properties of Lotteries 1. Lottery Space is convex 2. Requires consequentialist worldview 3. Assumes probabilities are known
Preferences over Lotteries 1. Rationality 2. Continuity: \[\forall L \in \mathcal{L}, \alpha L+ (1-\alpha)L^\prime \sim L^{\prime\prime}\] 3. Independence: \[L \succeq L^\prime \equiv \alpha L + (1-\alpha) L^{\prime\prime} \succeq \alpha L^\prime + (1-\alpha) L^{\prime\prime} \succeq\]
Expected Utility \[U(L) = \sum p_i u_i\]
Von-Neumann Morgensterm Theorem A rational preference relation over lotteries is continuous and independent iff it admits an expected utility representation
Properties of expected utility 1. Linear 2. Only preserved under increasing linear transformations 3. Cardinality matters
Risk Aversion/Jensen's Inequality \[\int u(x) dF(x) \le U(E_F) = u(\int x dF(x))\] U is concave
Risk Loving \[\int u(x) dF(x) \ge U(E_F) = u(\int x dF(x))\] U is convex
Risk-Neutral \[\int u(x) dF(x) = U(E_F) = u(\int x dF(x))\] U is linear
Risk Premium \[\eta(F, u) = E_F - c(F,u)\] where c is the certainty equivalent
Coefficient of Absolute Risk Aversion \[r(x) = -\frac{u^{\prime\prime}(x)}{u^\prime(x)}\]
More Risk Averse 1. When agent b prefers lottery F to certain out come X, agent a does as well \[2. c(F, u_b) \le c(F,u_a) \equiv \eta(F, u_b) \ge \eta(F,u_a) \] 3. a is "more concave" than b \[4. r_b(x) \ge r_a(x) \forall x\]
Declining Absolute Risk Aversion CARA is decreasing in wealth
Coefficient of Relative Risk Aversion \[\rho(x) = xr(x)\]
Insurance Problem \[\underset{\alpha \ge 0}{max} \pi u(w - \alpha q - D + \alpha) + (1-\pi) u(w - \alpha q)\]
First-Order Stochastic Dominance \[G(x) \le F(x)\] i.e. G pays unambiguously more than F \[\int u(x) dG(x) \ge \int u(x) dF(x)\]
Second-Order Stochastic Dominance \[\int G(t)dt \le \int F(t) dt\] G is "less risky" than F F is a mean-preserving spread of G For a concave utility, \[\int u(x)dF(x) \le \int u(x) dG(x)\]
Portfolio Problem for safe and risky asset \[\underset{\alpha}{max} \int u(\alpha(z-r) + wr) dF(z)\]
Assumptions of Producer Theory 1. Firms are price-takers 2. Technology is exogenous 3. Firms maximize profits
Properties of Production Sets \[1. Y \ne \emptyset \] 2. Y is closed \[3. y \ge 0, y \in Y \implies y = 0\] \[4. 0 \in Y\] \[5. y \in Y, y^\prime \le y \implies y^\prime \in Y\] \[6. y \in Y, y \ne 0 \implies y \in Y\]
Nonincreasing returns to scale \[y \in Y \implies \alpha y \in Y \ \forall \alpha \in [0,1]\] \[f(tx) \le tf(x) \ \forall t \ge 1\]
Nondecreasing returns to scale \[y \in Y \implies \alpha y \in Y \ \forall \alpha \ge 1\] \[f(tx) \ge tf(x) \ \forall t \ge 1\]
Constant returns to scale \[y \in Y \implies \alpha y \in Y \ \forall \alpha \ge 0\] \[f(tx) = tf(x) \ \forall t \ge 0\]
Convexity of production sets \[y, y^\prime \in Y \implies \alpha y + (1-\alpha) y^\prime \in Y\]
Transformation Function \[T: R^n \to R \ s.t.\] \[T(y) < 0 \equiv inefficient\] \[T(y) = 0 \equiv efficient\] \[T(y) > 0 \equiv infeasible\]
Marginal Rate of Transformation (MRT) \[\frac{\delta T/\delta y_j}{\delta T/\delta y_k}\]
Input Requirement Set \[V(y) = \{ x \in R^n: y \le f(x)\}\]
Isoquant \[V(y) = \{ x \in R^n: y = f(x)\}\]
Marginal Rate of Technical Substitution (MRTS) \[\frac{\delta f/\delta x_j}{\delta f/\delta x_k}\]
Homogeneous function \[f(tx) = t^k f(x)\]
Homothetic function Positive, monotonic transformation of HD-1 function
Elasticity of substitution \[ \sigma = \frac{MRTS}{(x_k/x_j)} \frac{\delta(x_k/x_j)}{\delta MRTS}\]
Elasticity of complementarity \[\frac{1}{\sigma}\]
Profit maximization problem \[max py \ s.t. y \in Y\]
Profit function \[\pi(y)\] \[\pi(p,w) = pf(x^*) - wx^*\]
Supply correspondence \[y(p) = \{y \in Y: py = \pi(p)\}\]
Weak Axiom of Profit Maximization \[p^t y^t \ge p^t y^s\]
Rationalization \[y^t \in y^*(p^t)\]
Mostrar resumen completo Ocultar resumen completo

Similar

Using GoConqr to study Economics
Sarah Egan
Economics
Emily Fenton
AN ECONOMIC OVERVIEW OF IRELAND AND THE WORLD 2015/16
John O'Driscoll
Economics - unit 1
Amardeep Kumar
Using GoConqr to teach Economics
Sarah Egan
Functions of Money
hannahcollins030
Comparative advantage
jamesofili
GCSE - Introduction to Economics
James Dodd
Market & Technology Dynamics
Tris Stindt
PMP Formulas
Krunk!
Aggregate Supply, Macroeconomic Equilibrium, The Economic Cycle, Economic Growth, Circular Flow and Measuring National Income
Hannah Nad