CMIS 351 Lesson 5 Decision Making and Intelligence

Descripción

Training and Development Manager CMIS 351 Fichas sobre CMIS 351 Lesson 5 Decision Making and Intelligence, creado por Adriana Vincelli-Joma el 15/12/2019.
Adriana Vincelli-Joma
Fichas por Adriana Vincelli-Joma, actualizado hace más de 1 año
Adriana Vincelli-Joma
Creado por Adriana Vincelli-Joma hace casi 5 años
0
0

Resumen del Recurso

Pregunta Respuesta
Decision making challenges 1. concept of rationality is hard to define 2. good outcomes result from irrational processes; bad outcomes result from good processes 3. limit in cognitive capabilities 4. uncertainty and complexity 5. info. overload 6. data quality
OLTP vs OLAP Online Transaction Processing (OLTP): -collects data electronically and process transaction online -backbone of all functional, cross-functional and inter-organizational systems in organization -provides raw info about transactions and status to support decision-making Online Analytic Processing (OLAP): -focus on making OLTP collected data useful for decision making -provides ability to sum, count, average, and perform other simple arithmetic operations on groups of data -report has measures, or facts and dimensions
What is a data resource challenge? -data are collected in OLTP but are not used to improve decision making
What is a business intelligence system? How do they provide competitive advantage? business intelligence (BI) system: provides info for improving decision making -group decision support systems: reduce biases inherent in group discussion and option evaluation -reporting systems: provide relevant, accurate, and timely info to right person -data-mining systems: discover patterns and relationships in data to predict future outcomes -knowledge management systems: publish employee and others' knowledge; create value from existing intellectual capital; foster innovation, improve customer service, increase organizational responsiveness, and reduce costs -expert systems: encode saving, and processing expert knowledge
What are the purpose and components of a data warehouse? Purpose: extract and clean data from operational systems and other sources Components: -operational databases -other internal data -external data -data extraction/cleaning/preparation programs -data warehouse metadata -data warehouse database -data-warehouse DBMS -business intelligence tools
What is a data mart and how is it different than a data warehouse? -database that prepares, stores, and manages data for reporting and data mining for specific business functions -created to address particular needs -smaller than data warehouse -address particular component of function area of business -users may not have data management expertise
Types of data-mining applications -unsupervised data mining: analysts do not create model or hypothesis before running analysis *cluster analysis: identify groups of entities that have similar characteristics -supervised data mining: model developed before analysis; statistical techniques applied to data *regression analysis: measures impact set of variables on another variable * neural networks: predict values and make classifications such as "good/poor prospect" customers
Mostrar resumen completo Ocultar resumen completo

Similar

El Cuerpo Humano
Diego Santos
6 Técnicas de Enseñanza que No Conocías
maya velasquez
LA FUNCIÓN DE NUTRICIÓN
M.Encina SF
Preguntas Módulo de Promoción de la Salud y Prevención de la Enfermedad
D. Valenzuela
Cómo Calcular la Nota de Admisión en la Selectividad
maya velasquez
INGLES PRONOMBRES 73
Pedro Fernández
Deeper Learning
Maya V.
"LAS TIC EN LA EDUCACIÓN"
miriam_fltapia
Test de historia de España S. XVIII, XIX y XX.
Diego Santos
mapa mental ecosistema
Lilian Garcia
LA LEYENDA DEL SEÑOR SAN ANTONIO
Javier Pareja