Trigonométrica fichas

Descripción

tarea de trigo
Nicolle Tenorio
Fichas por Nicolle Tenorio, actualizado hace más de 1 año
Nicolle Tenorio
Creado por Nicolle Tenorio hace más de 4 años
97
0

Resumen del Recurso

Pregunta Respuesta
ECUACIONES CUADRÁTICAS Una ecuación cuadrática o de segundo grado es toda ecuación en la cual, una vez simplificada, el mayor exponente de la incógnita es 2.
Entonces podríamos decir que la ecuación ax²+ bx + c = 0 es una ecuación de segundo grado. En esta ecuación La “x” es la variable o incógnita y las letras a, b y c son los coeficientes, los cuales pueden tener cualquier valor, excepto que a = 0.
EXISTEN DOS TIPOS DE ECUACIONES CUADRÁTICAS Completas: Son ecuaciones de la forma ax² + bx + c = 0 que tienen un término x², un término x y un término independiente de x. Entonces podríamos decir que la ecuación 2x² + 5x + 3 = 0 es una ecuación cuadrática completa.
Incompletas: Son ecuaciones de la forma ax² + c = 0 que carecen del término x o de la forma ax² + bx = 0 que carecen del término independiente. Entonces podríamos decir que la ecuación 2x² + 3 = 0 y la ecuación 2x² + 5x son ecuaciones cuadráticas incompletas. RAÍCES DE UNA ECUACIÓN CUADRÁTICA
Son los valores de la incógnita que satisfacen la ecuación. Toda ecuación cuadrática tiene dos raíces.
RESOLUCIÓN DE ECUACIONES CUADRÁTICAS Para dar solución a un sistema de ecuaciones cuadráticas debemos hallar las raíces de la ecuación. Para ello hacemos uso de la fórmula: x = [ – b ± √(b2 – 4ac) ] / 2a
El “±” expresa que la ecuación tiene dos soluciones La parte “b2 – 4ac” se le denomina discriminante: * Si es positivo, hay DOS soluciones * Si es cero sólo hay UNA solución, y si es negativo hay dos soluciones que incluyen números imaginarios. EJEMPLOS
Resolver la ecuación cuadrática 2x² + 5x + 3 = 0. Los coeficientes son: a = 2; b = 5 y c = 3. Los sustituimos en la fórmula: x= [ – b ± √( b2 – 4ac) ] / 2a → x = {- 5 ± √ [52 – 4(2)(3)] } / [2(2)] Resolvemos: x = { – 5 ± √[25 – 24] } / 4 = {-5 ± √1} / 4 x1 = {- 5 + 1 } / 4 ; x2 = {- 5 – 1} / 4 x1 = – 1 ; x2 = – 3/2
Resolver la ecuación cuadrática x² – 12x + 36 = 0. Los coeficientes son: a = 1; b = – 12 y c = 36. Los sustituimos en la fórmula: x = [ – b ± √(b2 – 4ac) ] / 2a → x = {- (-12) ± √[(-12)2– 4(1)(36)] } / [2(1)] Resolvemos x = {12 ± √ [144 – 144] } / 2 = 12 / 2 = 6 x1 = x2 = 6
Mostrar resumen completo Ocultar resumen completo

Similar

20) Negative personality
John Goalkeeper
ÁLGEBRA
JL Cadenas
Concepto y funciones del área de Recursos Humanos
Erika Caro
SEIS ESTRATEGIAS PARA MEJORAR LA COMPRENSIÓN LECTORA
lupitta_12
MICROECONOMÍA
ingrinati
EL DIÁLOGO
Eva Sánchez
Hormonas corticotroficas
Néstor León Arbulú
prueba 1
ANGELA HIDALGO
La Capilla De Los Resurrectos.
Karen Guerrero
ANATOMÍA...
Ulises Yo