Creado por Adriana Vincelli-Joma
hace casi 4 años
|
||
Pregunta | Respuesta |
uniform circular motion | -motion with constant angular velocity -ω = Δθ / Δt |
angular acceleration | -rate of change of angular velocity with time -α = Δω / Δt |
linear/tangential acceleration | -acceleration in direction tangent to circle at point of interest in circular motion -a_t = Δv / Δt |
linear and angular displacement | -x = θr -θ = x/r |
linear and angular velocity | -v = rω -ω = v/r |
tangential and angular acceleration | -a_t = rα -α = a_t/r |
Rotational Kinematic Equations | -θ = ωt -ω = ω_0 + αt -θ = ω_0t + 1/2 αt^2 -ω^2 = ω_0^2 + αθ |
moment of inertia | -mass times the square of perpendicular distance from the rotation axis -I = mr^2 (particle) |
moment arm | perpendicular distance to axis of rotation |
torque, angular acceleration, and moment of inertia | - τ = (m^2 r)α -net τ = Iα |
force and angular acceleration | -F = mrα |
rotational kinetic energy | -KE_rot = 1/2 I ω^2 |
mechanical energy with rotational motion | 1/2 m v_1^2 + 1/2 I ω^2 + mgh_1 = 1/2 m v_2^2 + 1/2 I ω_0^2 + mgh_2 |
Work-Energy Theorem with Rotational Motion | net W = 1/2 I ω^2 - 1/2 I ω_0^2 |
angular momentum | L = I ω |
torque and angular momentum | net τ = ΔL / Δt |
law of conservation of angular momentum | -L = constant -L = L' |
¿Quieres crear tus propias Fichas gratiscon GoConqr? Más información.