Micro Math Camp Definitions

Descripción

Fichas sobre Micro Math Camp Definitions, creado por Eric Andersen el 18/08/2015.
Eric Andersen
Fichas por Eric Andersen, actualizado hace más de 1 año
Eric Andersen
Creado por Eric Andersen hace más de 9 años
15
0

Resumen del Recurso

Pregunta Respuesta
Metric Space A pair \(\left(S, d \right)\) where \( S \) is a collection of points and \( d \) is a distance function on \( S \) that satisfies the properties of a metric.
Cauchy-Schwarz Inequality For any vectors \( x, \, y \) of an inner product space, \[ \left| \langle x, \, y \rangle \right|^2 \le \langle x, \, x \rangle \cdot \langle y, \, y \rangle. \] Equivalently, \[ \left| \langle x, \, y \rangle \right| \le \| x \| \cdot \| y \|. \]
Discrete Metric The discrete metric is: \[d \left(x, \, y \right) = \begin{cases} 1 \; \text{if } x \ne y, \\ 0 \; \text{if } x = y \end{cases} \]
an \(\epsilon\)-ball of \(x\) in \(S\) \[ B_\epsilon \left( x \right) \equiv \left\{ y \in S \,|\, d \left( x,\,y \right) < \epsilon \right\} \]
Open Set A set \(U \subseteq S\) is open if \( \forall x \in U, \; \exists \epsilon > 0 \) such that \( B_\epsilon \left( x \right) \subseteq U\)
Metric Topology A metric topology of a metric space \( \left(S, \, d \right) \) is the set of all open sets in \(S \). That is: \[ \mathcal{T} \equiv \left\{ U \subseteq S \, | \, U \text{ is open} \right\} \]
Power Set of \( X \) The power set \( 2^X \) is the set of all subsets of \(X\).
Topological Space A set \( X \) together with a set \(T \subseteq 2^X\) that satisfies the three properties of a metric topology on S
Closed Set A set \(U \subseteq S\) is closed if \( S \setminus U \) is open. Alternatively, a set \( C \subseteq S \) is closed if \( \forall \left\{ x_n \right\}_{n=1}^{\infty} \subseteq C \) for which \( \exists x \in S \) such that \( x_n \rightarrow x, \, x \in C\).
Sequence A countably indexed collection of elements \( \left\{ x_n \right\}_{n=1}^{\infty} \subseteq S \)
Convergent Sequence A sequence converges to a limit point \( x \in S \) if \( \forall \epsilon \in \mathbb{R}_+, \; \exists N_\epsilon \) such that \( d \left(x_m, \, x \right) < \epsilon \) for all \( m > N_\epsilon \)
Convergent Subsequence A sequence contains a convergent subsequence if there exists an index set \( N \subset \mathbb{N} \) such that \( \left\{ x_n \right\}_{n \in \hat{N}} \rightarrow x \) for some \(x \in S\)
Closure of a Set This is the smallest closed set containing \( C \). \[ cl \left( C \right) = \bigcap \left\{ K \in 2^S \, | \, C \subseteq K; K \text{ closed.} \right\} \]
Cauchy Sequence A sequence \( \left\{x_n\right\}_{n=1}^{\infty} \subseteq S \) such that \( \forall \epsilon \in \mathbb{R}_+, \; \exists N_\epsilon \in \mathbb{N} \) such that \( d \left(x_m,\,x_l\right) < \epsilon \) for all \(m, l > N_\epsilon\)
Bounded Set A set \(U \subseteq S \) is bounded if \( \exists M \in \mathbb{R}_+ \) such that \( \forall x,y \in U, \; d \left(x,\,y\right) \le M \)
Complete Set A set \( U \subseteq S \) is complete if for every Cauchy sequence \( \left\{x_n\right\}_{n=1}^{\infty} \subseteq U, \; \exists x \in U \) such that \( x_n \rightarrow x \).
Open Cover of a set \( K \) A collection of sets \( \left\{ U_\alpha \right\}_{\alpha \in A} \) such that \( U_\alpha \in \mathcal{T} \) for all \( \alpha \in A \) and \( K \subseteq \bigcup_{\alpha \in A} U_\alpha \).
Finite Subcover An open cover of \( K \) admits a finite subcover if there exists a finite set \( A' \subseteq A \) such that \( K \subseteq \bigcup_{\alpha \in A'} U_\alpha \).
Compact Set A subset \( K \) of a metric space \( \left( S, \, d \right) \) is compact if every open cover of \( K \) has a finite subcover.
Finite Intersection Property A collection \( \mathcal{A} \subseteq 2^S \) has the finite intersection property if \( \bigcap \mathcal{A}' \ne \emptyset \) for any finite, nonempty collection \( \mathcal{A}' \subseteq \mathcal{A} \)
Totally Bounded Metric Space A metric space \( S \) is totally bounded if for any \( \epsilon > 0 \), there exists a finite collection of points \( x_1, \, \ldots, \, x_N \) such that the open balls \( B_\epsilon \left( x_1 \right), \ldots, \, B_\epsilon \left(x_N\right) \) cover \( S \).
Connected Metric Space A metric space \( S \) is connected if there do not exist disjoint, nonempty open sets \( U \) and \( U' \) such that \( U \cup U' = S \)
Countably Infinite Set An infinite set \( S \) is countably infinite if there exists a bijection \( f : S \rightarrow \mathbb{N} \).
Countable set A set is called countable if it is finite or countably infinite.
Dense Set A set \( D \) is dense in a metric space \( \left( S, \, d \right) \text{ if } cl \left( D \right) = S \).
Separable A metric space \( \left( S, \, d \right) \) is separable if there exists a countable set \( D \) that is dense in \( S \).
Continuity A function \( f : X \rightarrow Y \) is continuous at \( x \in X \text{ if } \forall \left\{x_n\right\}_{n=1}^{\infty} \subseteq X \) such that \( x_n \rightarrow x \in X \), we have \( f \left( x_n \right) \rightarrow f \left( x \right) \). Alternatively, if \( \forall \epsilon > 0, \, \exists \delta > 0 \) such that for all \( z \in X \) such that \( d_X \left( x, \, z \right) < \delta, \, d_Y \left( f \left( x \right), \, f \left( z \right) \right) < \epsilon \).
Pointwise Convergence The sequence of functions \( \left\{f_n\right\}_{n=1}^{\infty} \) converges pointwise to the function \( f \text{ if } \forall x \in X \), the sequence \( f_n \left( x \right) \) converges to \( f \left( x \right) \).
Uniform Convergence The sequence of functions \( \left\{f_n\right\}_{n=1}^{\infty} \) converges pointwise to the function \( f \text{ if } \forall \epsilon > 0 \) there exists \( N_\epsilon \) such that \( \forall x \in S \text{ and all } n \ge N_\epsilon, \, d \left( f_n \left(x \right), \, f \left( x \right) \right) < \epsilon \).
Convex Set Given a vector space \( \left( S, \, +, \, \cdot \right) \), a set \( U \subseteq S \) is convex if \( \forall x, \, y \in U \text{ and } \forall \alpha \in \left[0, \, 1 \right], \) \[ \alpha x + \left(1-\alpha\right)y \in U \]
Convex Hull of a Set \( co \left( U \right) \) is the intersection of all convex sets containing \( U \).
Supremum Least Upper Bound
Infinum Greatest Lower Bound
\(i\)-th partial derivative \[ \lim_{h \rightarrow 0} \frac{ f \left( \tilde{x}_1, \ldots, \, \tilde{x}_i + h, \, \tilde{x}_{i+1}, \ldots, \, \tilde{x}_n \right) - f \left( \tilde{x}_1, \ldots, \, \tilde{x}_i, \, \tilde{x}_{i+1}, \ldots, \, \tilde{x}_n \right) }{h} \]
Gradient \[ \nabla f \left( x \right) = \left[ \frac{ \partial f }{ \partial x_i} \right] \] is the \( N \times 1 \) vector of first partial derivatives of \( f \text{ at } x \).
Hessian Matrix of \( f \text{ at } x \) matrix of well-defined partial and cross-partial derivatives
Jacobian Matrix of \( f \text{ at } x \) matrix of partial derivatives
Differentiable Function If there is an \( M \times N \) matrix \( Df\left(x\right) \) such that for any sequence of vectors \( w \rightarrow 0 \) \[ \lim_{w \rightarrow 0} \frac{ \| f \left( x + w \right) - f \left( x \right) - Df\left(x\right)w \|}{\|w\|} = 0 \]
Taylor's Approximation \[ f\left(x\right) \approx f \left(x_0 \right) + \sum_{k=1}^{n} \frac{f^k \left(x_0 \right)}{k!} \left(x - x_0 \right)^k \]
Concave Function A function \( f : A \rightarrow \mathbb{R} \) defined on a convex set \( A \subset \mathbb{R}^N \) is concave if and and only if \[ f \left( \alpha x' + \left(1-\alpha\right)x\right) \ge \alpha f\left(x'\right) + \left(1-\alpha\right)f\left(x\right) \] for all \( x, \, x' \in A \) and all \( \alpha \in \left[0,\,1\right] \)
Convex Function A function \( f : A \rightarrow \mathbb{R} \) defined on a convex set \( A \subset \mathbb{R}^N \) is concave if and and only if \[ f \left( \alpha x' + \left(1-\alpha\right)x\right) \le \alpha f\left(x'\right) + \left(1-\alpha\right)f\left(x\right) \] for all \( x, \, x' \in A \) and all \( \alpha \in \left[0,\,1\right] \)
Negative semidefinite matrix An \( N \times N \) matrix \(A\) is negative semidefinite if \( z'Az \le 0 \) for all \(z\in\mathbb{R}^{N}\). A strict inequality implies negative definiteness.
Positive semidefinite matrix An \( N \times N \) matrix \(A\) is positive semidefinite if \( z'Az \ge 0 \) for all \(z\in\mathbb{R}^{N}\). A strict inequality implies positive definiteness.
\(t\)-upper contour set The set of all points in \(A\) with values greater than \(t\). \[ C_t^+ \left(f\right) = \left\{x\in A \, | \, f\left(x\right) \ge t \right\} \]
\(t\)-lower contour set The set of all points in \(A\) with values less than \(t\). \[ C_t^- \left(f\right) = \left\{x\in A \, | \, f\left(x\right) \le t \right\} \]
Quasiconcave Function A function \(f: A \rightarrow \mathbb{R}\) is quasiconcave if its upper contour sets \(C_t^+ \left( f \right)\) are convex for any \(t\in\mathbb{R}\). That is, \(\forall t\in\mathbb{R}\) and \(\forall\, x,\,x'\in A\): \[ \min \left\{ f\left(x\right),\, f\left(x'\right) \right\} \ge t \implies f\left(\alpha x + \left[1-\alpha\right]x'\right) \ge t. \] Equivalently, \( f \) is quasiconcave if and only if \[ f \left(\alpha x + \left(1-\alpha\right)x^\prime\right) \ge \min \left\{ f\left(x\right),\, f\left(x'\right) \right\} \] for all \(x, \, x^\prime \in A \) and \( \alpha \in \left[0, \, 1 \right] \). Any concave function is quasiconcave. Any increasing function \( f: \mathbb{R} \rightarrow \mathbb{R} \) is quasiconcave.
Quasiconvex Function A function \(f: A \rightarrow \mathbb{R}\) is quasiconvex if its lower contour sets \(C_t^- \left( f \right)\) are convex for any \(t\in\mathbb{R}\). That is, \(\forall t\in\mathbb{R}\) and \(\forall\, x,\,x'\in A\): \[ \max \left\{ f\left(x\right),\, f\left(x'\right) \right\} \le t \implies f\left(\alpha x + \left[1-\alpha\right]x'\right) \le t. \] Equivalently, \( f \) is quasiconex if and only if \[ f \left(\alpha x + \left(1-\alpha\right)x^\prime\right) \le \max \left\{ f\left(x\right),\, f\left(x'\right) \right\} \] for all \(x, \, x^\prime \in A \) and \( \alpha \in \left[0, \, 1 \right] \).
Local Maximizer/Minimizer of \(f\) A local maximizer is a vector \(x^\ast \in A\) where for a \(\delta > 0 \) \[ f\left(x^\ast\right) \ge f\left(x\right) \text{ for all } x \in B_\delta \left(x^\ast\right) \]. A local minimizer is defined by reversing the inequality.
Global Maximizer/Minimizer of \(f\) A global maximizer is a vector \(x^\ast \in A\) where for a \(\delta > 0 \) \[ f\left(x^\ast\right) \ge f\left(x\right) \text{ for all } x \in A \]. A local minimizer is defined by reversing the inequality.
Critical Points of \(f\) All \( x \in A\) such that \[ \nabla f \left( x \right) = 0 \]
Complementary Slackness requires \(\lambda_k^\ast\) = 0 if the constraint \[ h_i \left(x\right) \le c_i \] does not bind
Constraint Qualification An optimization problem satisfies constraint qualification if and only if the \( M \times N \) matrix \[ G \left( x^\ast \right) = \left[ \begin{matrix} \frac{\partial g_1 \left( x^\ast \right)}{\partial x_1} & \ldots & \frac{\partial g_1 \left( x^\ast \right)}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_M \left( x^\ast \right)}{\partial x_1} & \ldots & \frac{\partial g_M \left( x^\ast \right)}{\partial x_N} \\ \end{matrix} \right] \] satisfies \( \operatorname{rank} \left(G\right) = M \) at an optimum \( x^\ast \in A \).
Correspondence Let \( X \) and \( Y\) be metric spaces. The correspondence \( \Gamma : X \rightrightarrows Y \) is a function from \( X \) to \( 2^Y \setminus \emptyset \).
Upper Hemicontinuous Correspondence A correspondence \( \Gamma \) is upper hemicontinuous at \(x \in X\) if for every open set \( O \subseteq Y \) with \( \Gamma \left( x \right) \subseteq O \), there exists \( \delta > 0 \) such that \( \Gamma \left( B_\delta \left( x \right) \right) \subseteq O \). \( \Gamma \) is upper hemicontinuous if this holds for every \( x \in X \).
Compact-Valued Correspondence \( \Gamma \) A correspondence \( \Gamma : X \rightrightarrows Y \) is compact valued if \( \Gamma \left( x \right) \) is compact in \(Y\) for each \(x\).
Closed-Valued Correspondence \( \Gamma \) A correspondence \( \Gamma : X \rightrightarrows Y \) is closed valued if \( \Gamma \left( x \right) \) is closed in \(Y\) for each \(x\).
Convex-Valued Correspondence \( \Gamma \) A correspondence \( \Gamma : X \rightrightarrows Y \) is convex valued if \( \Gamma \left( x \right) \) is convex in \(Y\) for each \(x\).
Lower Hemicontinuous Correspondence A correspondence \( \Gamma : X \rightrightarrows Y \) is lower hemicontinuous at \(x \in X\) if for every open set \(O \subseteq Y \) with \( \Gamma \left( x \right) \cap O \ne \emptyset \), there exists a \( \delta > 0 \) such that \( \Gamma \left( x' \right) \cap O \ne \emptyset \) for all \( x' \in B_\delta \left(x\right)\). \( \Gamma\) is lower hemicontinuous if this holds at each \(x \in X \).
Upper Inverse Image \[ \Gamma^{-1} \left( O \right) \equiv \left\{ x \in X \, | \, \Gamma \left(x\right) \subseteq O \right\} \]
Lower Inverse Image \[ \Gamma_{-1} \left( O \right) \equiv \left\{ x \in X \, | \, \Gamma \left(x\right) \cap O \ne \emptyset \right\} \]
Continuous Correspondence A correspondence \(\Gamma\) is called continuous if it is both upper and lower hemicontinuous.
Closed Graph Property A correspondence is closed at \(x \in X\) if for all sequences \(x_n \rightarrow x \text{ and } y_n \rightarrow y \), we have \( y \in \Gamma \left( x \right) \) whenever \( y_n \in \Gamma \left( x_n \right) \) for all \( n \). If \(\Gamma\) is closed at every \(x\), then it has the closed graph property.
Hyperplane in \( \mathbb{R}^{N} \) A \(N-1\) dimensional subset of \(\mathbb{R}^{N}\) that can be described by a single linear equation: \[ H \left(p,\,r\right) = \left\{ x \in \mathbb{R}^N \, | \, p \cdot x = r \right\} \] where \(p\) is a non-zero vector in \(\mathbb{R}^N\) and \(r\) is a real number.
Separating Hyperplane Let \(A, B \subset \mathbb{R}^N, \, p \in \mathbb{R}^N \setminus \left\{ 0 \right\} \). The hyperplane \( H \left( p, \, r \right) \) separates \(A\) and \(B\) if \( p \cdot r \ge r \forall x \in A \) and \( p \cdot y \le r \forall y \in B \)
Proper Separation of Sets The separation of sets \(A, \, B \subset \mathbb{R}^N \text{ by } H \left(p, \, r \right) \) is proper if there exists \(x \in A \text{ and } y \in B \text{ such that } p \cdot x \ne p \cdot y \)
Strict Separation of Sets The hyperplane \(H \left(p, \, r \right)\) strictly separates sets \(A, \, B \subset \mathbb{R}^N\) if \[ p \cdot x > r \text{ for all} x \in A \text{ and } p \cdot y < r \text{ for all } y \in B \]
Partially-Ordered Set (poset) A pair \( \left(X, \succsim \right) \) where \(X\) is a set and \(\succsim\) is a partial order.
Partial Order A binary relation \( \succsim \subseteq X \times X \) that satisfies: (a) reflexivity: \( \forall x \in X, \, x \succsim x \), (b) antisymmetry: \(\forall x, y \in X\) if \(x \succsim y\) and \(y \succsim x\) then \(x = y\), and (c) transitivity: \(\forall x, y, z \in X\) if \(x \succsim y\) and \(y \succsim z\) then \(x \succsim z\).
Chain A poset is called a chain if the partial order \( \succsim \) is complete on \( X \). That is, for all \(x, y \in X \) either \( x \succsim y \) or \( y \succsim x \).
Bounds of a Poset Let \(E \subseteq X \) be a subset of a poset. If we have \(x^\prime \succsim x\) for all \(x \in E\), then \( x^\prime \) is an upper bound for E; similarly if \(x \succsim x^\prime \) for all \(x \in E\) then \( x^\prime \) is a lower bound for \(E\).
Supremum of \(E\) in \(X\) Denoted \(\sup_X \left(E \right) \), the supremum of \(E\) in \(X\) is an element \( x^\ast \in X \) such that \(x^\ast \) is an upper bound of \( E \) and if \( x^\prime \) is an upper bound of \( E \), then \( x^\prime \succsim x^\ast\).
Infimum of \(E\) in \(X\) Denoted \(\inf_X \left(E \right) \), the infimum of \(E\) in \(X\) is an element \( x_\ast \in X \) such that \(x_\ast\) is a lower bound of \(E\) and if \(x'\) is a lower bound of \(E\), then \(x_\ast \succsim x'\).
Join of \(x \text{ and } y\) For a two element subset \( \left\{x,\,y\right\} \subseteq X\), the supremum of \( \left\{x,\,y\right\}\) in \(X\) is called the join and is denoted \(x \vee y \).
Meet of \(x \text{ and } y\) For a two element subset \( \left\{x,\,y\right\} \subseteq X\), the infimum of \( \left\{x,\,y\right\}\) in \(X\) is called the meet and is denoted \( x \wedge y \).
Lattice A poset \( \left(X,\,\succsim \right) \) such that \(x \vee y \) and \(x \wedge y\) exist for every pair of elements \(x,y \in X\).
Sublattice Let \(\left(X,\,\succsim\right)\) be a lattice. A set \( E \subseteq X \) is called a sublattice of \(X\) if \(\forall x, y \in E\), we have \(\sup_X \left(\left\{x,\,y\right\}\right) \in E \) and \( \inf_X \left( \left\{x,\,y\right\}\right) \in E \). That is, \(E\) contains the meet and join of all combinations of its elements. The collection of all nonempty sublattices for a lattice \( \left(X, \, \succsim \right) \) is denoted \( \mathcal{L} \left( X \right) \).
Induced Set Ordering on \( \mathcal{L} \left( X \right) \) Denoted \( \sqsubseteq \) and defined by \( A \sqsubseteq B \) if and only if for all \( x \in A \text{ and } y \in B \), we have \(x \wedge y \in A \) and \(x \vee y \in B\).
Complete Lattice A lattice \( \left(X, \, \succsim \right) \) is called complete if \( \sup_X \left( E \right) \) and \( \inf_X \left( E \right) \) both exist for every nonempty subset \( E \subseteq X \).
Subcomplete Sublattice A sublattice \(E\) of \(X\) is subcomplete if \( \sup_X \left( F \right) \) and \( \inf_X \left( F \right) \) are both in \(E \) for every nonempty set \( F \subseteq E\).
Increasing and Decreasing Monotone Functions Let \( \left(X,\,\succsim_X\right)\) and \( \left( Y, \, \succsim_Y \right) \) be posets. A function \(f \,: \, X \rightarrow Y \) is increasing if \(x \succsim_X x' \implies f \left(x\right) \succsim_Y f\left(x'\right)\) for all \(x, x' \in X\). A function \(f \,: \, X \rightarrow Y \) is decreasing if \(x \succsim_X x' \implies f \left(x'\right) \succsim_Y f \left( x \right) \) for all \( x, x' \in X\). The function is monotone if it is either increasing or decreasing.
Increasing Differences Let \(X\) and \(T\) be posets and let \(S \subseteq X \times T\). A function \(f \, : \, S \rightarrow \mathbb{R} \) has increasing differences on \(S\) if \(f \left(x, \, t'\right) - f\left(x, \, t \right) \) is increasing in \(x\) on the set \(\left\{ x \in X \, | \, \left( x, \, t' \right) \in S \text{ and } \left(x, \, t \right) \in S \right\} \) for all \(t' \succ t \).
Supermodular Function Let \(X\) be a lattice. A function \(f \, : \, X \rightarrow \mathbb{R} \) is called supermodular iff \[ f \left( x \right) + f \left( x' \right) \le f \left( x \vee x' \right) + f \left( x \wedge x' \right)\] for all \(x, x' \in X \).
Quasisupermodular Function Let \(X\) be a lattice and \(Y\) be a poset. A function \(f : \, X \rightarrow Y \) is quasisupermodular if \[ f \left( x \right) \succsim \left( \succ \right) f \left( x \wedge x' \right) \implies f \left( x \vee x' \right) \succsim \left( \succ \right) f \left( x' \right) \] for all \(x, \, x' \in X\).
Single Crossing Property Let \(X, \, T, \text{ and } Y\) be posets and \( S \subseteq X \times T \). A function \( f : \, S \rightarrow Y \) satisfies the single crossing property on \(S\) if \[ f \left( x', \, t \right) \succsim \left( \succ \right) f \left( x, \, t \right) \] \[ \implies \] \[ f \left( x', \, t' \right) \succsim \left( \succ \right) \, f \left( x, \, t' \right) \] for all \( x' \succ x \) and \( t' \succ t \) with \( \left\{x, \, x'\right\} \times \left\{t, \, t' \right\} \subseteq S \).
Mostrar resumen completo Ocultar resumen completo

Similar

Phrasal verbs
John Goalkeeper
Gramática para Practicar el First Certificate II
Diego Santos
antonimos I
Kioshi Gonzales
TEOREMA de PITÁGORAS
JL Cadenas
Ingeniería Industrial
genifer.estrada
MODAL VERBS
Florencia Soledad
Poniendo en Práctica el Aprendizaje Basado en Problemas
Diego Santos
Organizador Gráfico
r2p2casa
Las Alteraciones
mariajesus camino
Mapa Conceptual Resolucion 1995 de 1999
alsalazar5
Repaso de Trastornos hidroelectroliticos
Claudia Genoveva Perez Cacho