GRE Study Linear Algebra

Descripción

Fichas sobre GRE Study Linear Algebra, creado por Marissa Miller el 05/10/2015.
Marissa Miller
Fichas por Marissa Miller, actualizado hace más de 1 año
Marissa Miller
Creado por Marissa Miller hace alrededor de 9 años
8
1

Resumen del Recurso

Pregunta Respuesta
Number of Solutions to a Linear System 0 solutions (inconsistent) 1 solution (consistent) infinitely many solutions (consistent)
Dot Product \( \vec{u}\cdot\vec{v} = u_{1}v_{1} + u_{2}v_{2} + \ldots + u_{n}v_{n}\)
Socks and Shoes Theorem \((AB)^{-1} = A^{-1}B^{-1} \)
Number of free variables = number of unknowns - number of nonzero rows in echelon matrix
Solution to \(A\vec{x} = \vec{b} \) if \(A\) is invertible \(\vec{x} = A^{-1}\vec{b} \)
Gaussian Elimination 1) augmented matrix 2) reduce to echelon form 3) backwards sub
Reducing to Echelon form options > multiply row by constant > interchange two rows > add multiple of another row
Inverse of a 2 by 2 Matrix \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \] \[ A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]
Vector Space > closed under addition and scalar multiplication > must contain \(\vec{0} \)
Nullspace > set of all solutions to \(A\vec{x} = \vec{0} \) > if a matrix is invertible, the only solution to \(A\vec{x} = \vec{0} \) is the trivial one
Linear Combination \(k_{1}\vec{v_{1}} + k_{2}\vec{v_{2}}+ \ldots k_{n}\vec{v_{n}}\)
Span set of all linear combinations of vectors
Linearly Independent If \(k_{1}\vec{v_{1}} + k_{2}\vec{v_{2}}+ \ldots k_{n}\vec{v_{n}} = \vec{0}\) is only true for \(k_{i} = 0\)
Basis collection of linearly independent vectors that span a space
Dimension number of vectors in a space
To determine of vectors are linearly independent... ...echelon the vectors; any free variables means they are dependent
Cross Product \(\vec{u}\times\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{vmatrix} \)
Equation for plane through two vectors > cross product > use cross product to get a normal vector \( (a b c) \) > plane: \(ax +by +cz = 0\)
Column Rank max number of linearly independent columns
Row Rank max number of linearly independent rows
Rank = Row rank = column rank
Column Space for an m by n matrix, CS is a subspace of \( R^{m}\) spanning the columns
dim(CS(A)) = rank(A)
Basis for CS > echelon form of \(A^{T}\) > find number of independent columns > pick those columns
To see if \(\vec{b}\) is in CS(A)... ...see if there is a solution to \(A\vec{x} = \vec{b}\)
Mostrar resumen completo Ocultar resumen completo

Similar

Todos los Países del Mundo y sus Capitales
maya velasquez
Fórmulas Física
Diego Santos
ENFERMERÍA HOSPITALARIA
celuzcabascango
Mi Entorno Personal de Aprendizaje (PLE)
Martín López Barrientos
Estructura atómica. Modelos y Teorías
Jean Paul Arango
Organizadores graficos
obvelasquezl34
ESTUDIANTE
Omar valeta
FACTORES QUE INTERVIENEN EN EL MARKETING
Juan Carlos Pimiento Lancheros
Mapa conceptual "Desarrollo Sustentable"
Almendra Navidad
Ciclo de vida de un producto
Mariana Jaqueline Perez Navarro
106 Mejores Practicas en Supply Chain Management y Logistica
julian Valencia