WJEC FP3

Descripción

FP3 flashcards
Joshua Butterwor
Fichas por Joshua Butterwor, actualizado hace más de 1 año
Joshua Butterwor
Creado por Joshua Butterwor hace más de 8 años
8
1

Resumen del Recurso

Pregunta Respuesta
Express \(\sinh{x}\) in terms of exponentials. \[\sinh{x}=\frac{e^{x}-e^{-x}}{2}\]
Express \(\cosh{x}\) in terms of exponentials. \[\cosh{x}=\frac{e^{x}+e^{-x}}{2}\]
Express \(\tanh{x}\) in terms of exponentials. \[\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\] or \[\tanh x=\frac{e^{2x}-1}{e^{2x}+1}\]
Express \(\cosh^{-1}{x}\) in terms of natural logs \[\cosh^{-1}{x}=\ln({x+\sqrt{x^{2}-1}})\]
Express \(\sinh^{-1}{x}\) in terms of natural logs \[\sinh^{-1}{x}=\ln({x+\sqrt{x^{2}+1}})\]
Express \(\tanh^{-1}{x}\) in terms of natural logs \[\tanh^{-1}{x}=\frac{\ln(\frac{1+x}{1-x})}{2}\]
Differentiate \(\cosh{x}\) \[\frac{\partial \cosh{x}}{\partial x}=\sinh{x}\]
Differentiate \(\sinh{x}\) \[\frac{\partial \sinh{x}}{\partial x}=\cosh{x}\]
Differentiate \(\tanh{x}\) \[\frac{\partial \tanh{x}}{\partial x}=\sech^{2}{x}\]
Differentiate \(\sinh^{-1}{x}\) \[\frac{\partial sinh^{-1}{x}}{\partial x}=\frac{1}{\sqrt{1+{x}^2}}\]
Differentiate \(\cosh^{-1}{x}\) \[\frac{\partial cosh^{-1}{x}}{\partial x}=\frac{1}{\sqrt{{x}^{2}-1}}\]
Differentiate \(\tanh^{-1}{x}\) \[\frac{\partial tanh^{-1}{x}}{\partial x}=\frac{1}{1-{x}^{2}}\]
Integrate \(\tanh^{-1}{x}\) \[\int \tanh x = \ln{\cosh{x}}\]
What is Osborne's Rule? The idea that trigonometric equations can be changed to hyperbolic equations by exchanging the trig functions for their hyperbolic counterparts and changing the sign wherever there is a product of two sines.
Use Osborne's rule to find the corresponding hyperbolic equation to: \[\tan^{2}{x}+1\equiv \sec^{2}{x}\] \[1=sech^{2}{x} + \tanh^{2}{x}\]
Use Osborne's rule to find the corresponding hyperbolic equation to: \[\cot^{2}{x}+1\equiv \cosec^{2}{x}\] \[cosech^{2}{x}=1+ \coth^{2}{x}\]
What is the integral of\( f'(x)[f(x)]^{n}\) \[\frac{1}{n+1}[f(x)]^{n+1}+c\]
What is the integral of \(\frac{f'(x)}{f(x)}\) \[\ln\left | f(x) \right |+c\]
Mostrar resumen completo Ocultar resumen completo

Similar

GCSE Subjects
KimberleyC
Logic gate flashcards
Zacchaeus Snape
Trigonometry and Geometry
Winbaj08
Matrix Algebra - AQA FP4
kcogman
Matricies
Winbaj08
CORE
Winbaj08
Level 2 Further Mathematics - AQA - IGCSE - Matrices
Josh Anderson
Maclaurin Series and Limits
nick.mason1998
GCSE Subjects
Jeb7
FP3 differential equations
Joseph Stevens