Physics GRE Prep - Classical Mechanics

Descripción

Chapter 1 Equations and Concepts from Conquering the Physics GRE
Hayden Tornabene
Fichas por Hayden Tornabene, actualizado hace más de 1 año
Hayden Tornabene
Creado por Hayden Tornabene hace alrededor de 8 años
55
0

Resumen del Recurso

Pregunta Respuesta
Blocks on Ramps: Force Parallel and Force Perpendicular \[F_{g,par} = mg \sin \theta\] \[F_{g,perp} = mg \cos \theta\]
Force of Friction (Normal Force) \[F_{f} = \mu mg \cos \theta\] \[N = mg \cos \theta\]
Kinematic Equations \[x(t) = v_{0x}t + x_0\] \[y(t) = -\frac{1}{2}gt^2 + v_{0y}t + y_0\] Only use kinematics if you need to know the explicit time dependence of a system. Energy considerations are faster otherwise.
Initial and Final Velocity Equation \[v_f^2-v_i^2 = 2a\Delta x\]
Radial Acceleration for Uniform Circular Motion \[a = \frac{v^2}{r}\]
Centripetal Force for Uniform Circular Motion \[F = \frac{mv^2}{r}\] Does not tell you what kind of force acting on body, just that a body moving in uniform circular motion has this force.
Types of Energy Translational Kinetic: \[\frac{1}{2}mv^2\] Rotational Kinetic: \[\frac{1}{2}I\omega^2\] Gravitational Potential: \[mgh\] Spring Potential: \[\frac{1}{2}kx^2\]
Potential Energy Line Integral \[\Delta U = - \int_{a}^{b} \textbf{F} \cdot d\textbf{l}\] For any conservative force - Integral is indirection of the force vector.
Gravitational Force and Gravitational Potential \[\textbf{F}_{grav} = \frac{Gm_1m_2}{r^2} \hat{r}\] \[U(r) = \frac{GmM}{r}\]
Potential Energy and Force Relationship \[\textbf{F} = -\nabla U\]
Linear Velocity of Rolling without Slipping \[v = R\omega\] Questions regarding which arrives with slower linear velocity are NOT questions of which arrive first. Need kinematics. Ex. energy expression for a sphere with mass m and radius r. \[mgh = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}mr^2)\omega^2\] REMEMBER: \[\omega = \frac{v}{r}\]
Work Energy Theorem - In terms of Kinetic Energy - In terms of Force \[E_{initial} + W_{other} = E_{final}\] \[W = \Delta KE\] \[W = \int \textbf{F} \cdot d\textbf{l}\]
Linear Collisions Conservation of Momentum Two balls collide, M on m with M scattering at \(\theta\) with initial velocity V with the final velocity equal for both at v. What is the scattering angle of \(\phi\) of m? \[MV = Mv\cos\theta + mv\cos\phi\] (parallel to initial) \[0 = Mv\sin\theta + mv\sin\phi\] (perpendicular to initial) \[\phi = \sin^{-1}(\frac{-M}{m}\sin\theta)\] Using limiting cases, triaging is essential. Finding phi analytically takes time.
Angular momentum of a point particle and for an extended body. \[\vec{L} = \vec{r} x \vec{p}\] \[\vec{L} = I \vec{\omega}\]
Torque (Angular Force) \[\vec{\tau} = \vec{r} x \vec{F}\]
Scalar Analogues of \(\vec{p} = m\vec{v}\) and \(\vec{F} = \frac{d\vec{p}}{dt}\) Angular Momentum: \(L = I\omega\) Torque: \(\tau = \frac{dL}{dt}\) The vector angular momentum \(\vec{L}\) is generally parallel to \(\vec{\omega}\) with the angular momentum determined by the right hand rule.
Moment of Inertia (General and Extended Objects) \[I = mr^2\] \[I = \int r^2 dm\] for dm = \(\rho dV\) and \(\rho = Ar^3\) Compute the integral to find the constant A and then insert into the extended objects integral. Ex. \(\rho(x) = Ax^2\) \[M = \int_{0}^{L} \rho(x)dx = \frac{1}{3} AL^3 \rightarrow A = \frac{3M}{L^3}\]
Parallel Axis Theorem \[I = I_{CM} + Mr^2\] For penny through center, \(I = \frac{1}{2}MR^2\) For penny axis through edge, \(I = \frac{1}{2}MR^2 + MR^2\)
Center of Mass Displacement from Origin \[\vec{r}_{CM} = \frac{\int \vec{r} dm}{M}\] Must solve three integrals, one for each dimension. Remember to select a volume integral and corresponding coordinate system that capitalizes on symmetry. For a system of point masses: \[\vec{r}_{CM} = \frac{\Sigma_i \vec{r_i} m_i}{M}\]
Lagrangian Function Scalar Function \[L(q, \dot{q}, t) = T - U\] for T kinetic energy, U potential energy, and q the generalized coordinate describing degrees of freedom.
How do you compute the correct expression for T in the Lagrangian? 1. Write down expressions for Cartesian coordinates in terms of chosen coordinates q. 2. Differentiate x,y,z to get \(\dot{x}, \dot{y}, \dot{z}\) 3. Form kinetic cartesian energy, \(T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)\) for point particle, \(T = \frac{1}{2}I\omega^2\) for an extended object. For extended object, must express \(\omega\) in terms of \(\dot{q}\), but this is easy as the two are generally equal. See page 20 in notebook for excellent example.
Euler-Lagrange Equations \[\frac{d}{dt}\frac{\delta L}{\delta\dot{q}} = \frac{\delta L}{\delta q}\] One equation for each degree of freedom, q. Remember that \(\frac{d}{dt}\) is a total time derivative, not a partial derivative. I.e. \(\frac{d}{dt}m\dot{x} = m\ddot{x}\)
Momentum Conjugate to q (Lagrangian) \[\frac{\delta L}{\delta \dot{q}}\] Iff the Lagrangian is independent of a coordinate q, the corresponding conjugate momentum quantity, \(\frac{\delta L}{\delta \dot{q}}\), is conserved. Quantities whose time derivatives are zero are conserved quantities.
Hamiltonian \[H(p,q) = \Sigma_i p_i \dot{q_i} - L\] for \(p_i = \frac{\delta L}{\delta \dot{q_i}}\) If the potential energy is not explicitly dependent on velocities of time, H = T + U Iff the Hamiltonian is independent of a coordinate 1, the corresponding conjugate momentum p is conserved.
Hamiltonian for Particle Moving in One Dimension \[H = T + U = \frac{p_x^2}{2m} + U(x)\]
Hamiltonian for Particle Moving in 2D Polar \[H = \frac{p_r^2}{2m} + \frac{p_{\theta}^2}{2mr^2}\]
Hamilton's Equations Scalar function encoding equations of motion: \[\dot{p} = -\frac{\delta H}{\delta q}\] \[\dot{q} = \frac{\delta H}{\delta p}\]
Lagrangian for a Simple Pendulum Take corresponding derivatives - e.g. \[\dot{x} = l\cos\theta\dot{\theta}\cos{\phi} - l\sin\theta\sin\phi\dot{\phi}\] Plug the \(\dot{x},\dot{y},\dot{z}\) into the expression for \[T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)\] Simplify and put into L = T - U for \(U = mgz = - mgl\cos\theta\)
Conservation of Conjugate Momentum Example For the Lagrangian independent of \(\phi\), \(p_{\phi}\) is conserved. Therefore the following quantity is conserved: \[p_{\phi} = \frac{\delta L}{\delta \dot{\phi}}\]
Mostrar resumen completo Ocultar resumen completo

Similar

Phrasal verbs
John Goalkeeper
Ecuaciones diferenciales lineales de segundo orden
Juan Beltran
Inglés - Verbos Compuestos I (Phrasal Verbs)
Diego Santos
Sub-Disciplinas de la Antropologia
Carlos Botero
Verbos de Francés
Diego Santos
Aula Invertida
Diego Santos
Fichas de formulas de Cinematica DE FISICA
Omar Vazquez Flores
Mapa conceptual
Franchesk Maestr
Prueba de Aptitud Académica - Lenguaje
enriquepor_2
TUBERCULOSIS
Mary Coronel
Proyecto Centro de Alfabetización digital en Michoacán
Alexander Peralta