Chapter 18- Gravitational fields

Descripción

Mapa Mental sobre Chapter 18- Gravitational fields, creado por Connor O'Hare el 20/11/2017.
Connor O'Hare
Mapa Mental por Connor O'Hare, actualizado hace más de 1 año
Connor O'Hare
Creado por Connor O'Hare hace casi 7 años
35
1

Resumen del Recurso

Chapter 18- Gravitational fields
  1. All objects with mass create a gravitation field
    1. This field extends to infinity
      1. The force that masses would feel in a gravitational field can be represented using 'lines of force'
        1. Planets or spherical masses form a radial field
          1. Close to the surface of a planet it appears as a uniform field
        2. (g) Gravitational field strength- "the gravitational force exerted per united mass at a point within a gravitational field"
          1. g=F/M
            1. ms^-2
              1. Nkg^-1
            2. Newton's law of gravitation- "The force between 2 point masses is directly proportional to the product of the masses and inversely proportional to the square of the separation between them
              1. F=-(GMm)/r^2
                1. G-Gravitational constant (6.67x10^-11)
              2. Combining Newton's law of gravitation and g=F/m allows us to calculate gravitational field strength in a radial field
                1. g=-(GM)/r^2
                2. Kepler's laws of planetary motion
                  1. 1st Law- The orbit of a planet is an elipse with the sun at one of the 2 foci
                    1. The sum of the distances to the 2 foci is constant for every point on the curve
                      1. 'Eccentricity' is a measure of how elongated the circle is
                    2. 2nd law- A line joining the sun to a planet will sweep out equal areas in equal time
                      1. 3rd law- The square of the orbital period T of a planet is directly proportional to the cube of its average distance r from the sun
                        1. (T^2/r^3) =k
                        2. Most planets in the solar system have 'nearly' circular orbits
                          1. We can therefore combine Gravitation force and centripetal force equations
                            1. v^2=(GM)/r
                              1. T^2=((4π^2)/GM)r^3
                            2. Satellites orbitng the Earth obey these laws
                              1. The speed of a satellite remains constant due to no air resistance
                                1. Geostationary orbit
                                  1. Specific orbit where it remains directly above the same point of the Earth whilst the Earth rotates
                                    1. 1) Must be in orbit above the Earth's equator
                                      1. 2) Must rotate in the same direction as Earth's rotation
                                        1. 3) Must have an orbital period of 24 hours
                                        2. Height or satellite is directly proportional to its period
                                      2. Gravitational potential (Vg)
                                        1. "the work done per unit mass to move an object to that point from infinity"
                                          1. Jkg^-1
                                            1. When r=∞, Vg=0
                                            2. Vg=-(GM)/r
                                              1. Moving towards a point mass results in a decrease in gravitation potential
                                                1. Moving towards a point mass results in a n increase in gravitation potential
                                              2. Gravitation potential energy (E)
                                                1. "the work done to move the mass from infinity to a point in a gravitational field"
                                                  1. E=mVg
                                                    1. In a radial field
                                                      1. E=-(GMm)/r
                                                      2. Escape velocity is the velocity needed so an object has just enough kinetic energy to escape a gravitational field
                                                        1. v^2=(2GM)/r
                                                      Mostrar resumen completo Ocultar resumen completo

                                                      Similar

                                                      Los reyes católicos: La integración de las coronas
                                                      maya velasquez
                                                      Freud: Pasión Secreta
                                                      Cesar_Adolfo
                                                      CICLO CELULAR
                                                      Lesvin Depaz
                                                      Historia de la Filosofía
                                                      maya velasquez
                                                      Fomentando el Aprendizaje Colaborativo con Grupos de Estudio
                                                      Diego Santos
                                                      Transporte a través de membrana.
                                                      heydi beltran
                                                      OBLIGACIÓN DE DETENER
                                                      juanbanogranell
                                                      METODOLOGÍA DE LA ENSEÑANZA
                                                      Francisco Vergara
                                                      DAILY ROUTINES and FREE TIME ACTIVITIES
                                                      Jefe Estudios Eso
                                                      Historia Psicología Precientífica
                                                      María Angélica Mesa Ramirez
                                                      MAPA CONCEPTUAL CAP 1 GERENCIA ESTRATEGICA
                                                      DAVID ARCE