null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
13397139
Basics of Set Theory: Natural and Real Numbers
Descripción
Senior Freshman Mathematics Mapa Mental sobre Basics of Set Theory: Natural and Real Numbers, creado por Luke Byrne el 22/04/2018.
Sin etiquetas
natural numbers
natural
numbers
real numbers
real
set theory
additive
multiplicative
mathematics
senior freshman
Mapa Mental por
Luke Byrne
, actualizado hace más de 1 año
Más
Menos
Creado por
Luke Byrne
hace más de 6 años
29
1
0
Resumen del Recurso
Basics of Set Theory: Natural and Real Numbers
"Set theory started around 1870’s → late development in mathematics but now taught early in one’s maths education due to the Bourbaki school."
A set is a collection of objects. x ∈ A means the element x is in the set A (i.e. belongs to A).
e.g. all students in a class
N the set of natural numbers starting at 0
0 ∈ N
if x ∈ N, then x + 1 ∈ N (x ∈ N → x + 1 ∈ N)
R is the set of real numbers. It is governed by the following axioms:
CLOSURE
Additive
∀x, y ∃z(x + y = z)
Multiplicative
∀x, y, ∃z(x × y = z)
Associativity
Additive
∀x, y, z: x + (y + z) = (x + y) + z
Multiplicative
∀x, y, z: x × (y × z) = (x × y) × z
Commutativity
Additive
∀x, y: x + y = y + x
Multiplicative
∀x, y: x × y = y × x
Distributivity
∀x, y, z: x × (y + z) = (x × y) + (x × z) and (y + z) × x = (y × x) + (z × x)
Identity
Additive
There is a number, denoted 0, such that for all x, x + 0 = x.
Multiplicative
There is a number, denoted 1, such that for all x, x * 1 = 1 * x = x.
Inverses
Additive
For every x there is a number, denoted -x, such that x + (-x) = 0
Multiplicative
For every nonzero x there is a number, denoted x^−1, such that (x * x^-1) = (x^-1 * x) = 1.
0 != 1
Irreflexivity of <
~(x < x)
Transitivity of <
If x < y and y < z, then x < z
Trichotomy
Either x < y, y < x, or x = y
Completeness
If a nonempty set of real numbers has an upper bound, then it has a least upper bound.
If x < y, then x + y < y + z.
If x < y and 0 < z, then x * z < y * z and z * x < z * y.
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
Multiplication tables (1-12)
Sarah Egan
Sistema de los números reales
HERNAN VILLAMIL MORENO
Numbers
Matthew Shiel
C2 - Formulae to learn
Tech Wilkinson
Explorar la Librería