REGRESION LINEAL MULTIPLE

Descripción

MAPA CONCEPTUAL
Rodrigo Cleiber Garcia Ortiz
Mapa Mental por Rodrigo Cleiber Garcia Ortiz, actualizado hace más de 1 año
Rodrigo Cleiber Garcia Ortiz
Creado por Rodrigo Cleiber Garcia Ortiz hace más de 6 años
622
0

Resumen del Recurso

REGRESION LINEAL MULTIPLE
  1. Posible relacion
    1. VARIABLE DEPENDIENTE Y CON VARIAS VARIABLES INDEPENDIENTES X
      1. Anotacion Matematica
        1. Y = a + b 1x1 b 2x2 ......b nxn + e
          1. Donde
            1. Y : VARIABLE A PREDECIR
              1. a, b1x1, b2x2...bnxn : PARAMETROS DESCONOCIDOS A ESTIMAR
                1. e :ERROR QUE SE COMETE EN LA PREDICCION DE LOS PARAMETROS
        2. Se encuentran
          1. PRINCIPALES ELEMENTOS
            1. Estos son
              1. COEFICIENTE RELACION MULTIPLE R
                1. Mide
                  1. LA INTENSIDAD DE RELACION ENTRE CONJUNTO VARIABLES X E Y
                  2. Puede darse la
                    1. MULTICOLINEALIDAD
                      1. Es que
                        1. DIFERENTES VARIABLES EXPLIQUEN LO MISMO DE LA VARIABLE INDEPENDIENTE
                  3. COEFICIENTE DE DETERMINACION
                    1. Mide
                      1. LA PROPORCION DE LA VARIABILIDAD DE LA VARIABLE X EXPLICADA POR LA VARIABLE Y ADMITIDAS EN EL MODELO
                    2. COEFICIENTE DE DETERMINACION AJUSTADO
                      1. Mide
                        1. LO MISMO QUE R2 PERO SIN INFLUENCIA # VARIABLES QUE INTRODUCIDAS
                      2. ERROR TIPICO PREDICCION
                        1. Indica
                          1. PARTE DE LA VARIABLE DEPENDIENTE QUE SE DEJA DE EXPLICAR
                        2. ANALISIS VARIANZA
                          1. Valora
                            1. HASTA QUE PUNTO ES ADECUADO MODELO PARA ESTIMAR LOS VLRES VARIABLE Y
                          2. ANALISIS RESIDUALES ¨e¨
                            1. Son
                              1. ESTIMACION VERDADEROS ERRORES
                      3. Usos
                        1. APLICACIONES
                          1. En la
                            1. IDENTIFICACION VARIABLES EXPLICATIVAS
                              1. Nos ayuda
                                1. CREAR UN MODELO
                                  1. SELECCIONAR LAS VARIALES QUE INFLUYEN
                                    1. DESCARTAR POCA INFORMACION
                                  2. DETECCION INTERACCIONES
                                    1. Entre
                                      1. VARIABLE INDEPENDIENTE QUE AFECTE LA VARIABLE RESPUESTA
                                    2. IDENTIFICACION VARIABLES CONFUSORAS
                                      1. Aun que
                                        1. DIFICIL, DE INTERES EN INVESTIGACION NO EXPERIMENTAL
                                2. Existe
                                  1. REQUISITOS Y LIMITACIONES
                                    1. Esta
                                      1. LINEALIDAD
                                        1. Esta
                                          1. SI LA RESPUESTA NO APARENTA SER LINEAL
                                            1. SE INTRODUCE EN EL MODELO COMPONENTES NO LINEALES
                                          2. NORMALIDAD Y EQUIDISTRIBUCION DE LOS RESIDUOS
                                            1. la validez del modelo
                                              1. DISTRUCION NORMAL
                                                1. MISMA DISPERSION PARA CADA COMBINACION DE VALORES DE LA VARIABLE X
                                              2. COLINEALIDAD
                                                1. Es cuando
                                                  1. DOS VARIABLES X ESTAN ESTRECHAMENTE REALCIONADAS
                                                2. OBSERVACIONES ANOMALAS
                                                  1. Se debe
                                                    1. IDENTIFICARLAS Y DESCARTARLAS
                                                    2. Tiene
                                                      1. GRAN INFLUENCIA RESULTADO
                                                    3. NUMERO DE VARIABLES INDEPENDIENTES
                                                      1. Incluir
                                                        1. MINIMO 20 OBSERVACIONES POR CADA VARIABLE X
                                                Mostrar resumen completo Ocultar resumen completo

                                                Similar

                                                MEDIDAD ESTADÍSTICAS BIVARIANTES
                                                kid Leal nieto
                                                Mapa de segundo parcial
                                                Marisela Mendoza
                                                Raíz Cuadrada 75.281
                                                JL Cadenas
                                                La Escala Musical
                                                mariajesus camino
                                                Conceptos de estadística y probabilidad
                                                Diego Santos
                                                Primera Guerra Mundial
                                                Diego Santos
                                                COLORES ~ ESPAÑOL / INGLÉS...
                                                Ulises Yo
                                                Bienvenido/a al Grupo para Enfermeros y Auxiliares
                                                Laura -
                                                MÓDULO VI - DEFENSA PERSONAL
                                                TRAINING SECURITY
                                                EXAMEN SIMULACIÓN PAA MATEMÁTICAS PARTE 3
                                                CAROLINA SABORI
                                                Enfoques de Investigación
                                                Karen Dubón