Computer science algorithm.

Descripción

This mind map i will go over the algorithm kinds and types.
Enéas Silva
Mapa Mental por Enéas Silva, actualizado hace más de 1 año
Enéas Silva
Creado por Enéas Silva hace más de 6 años
32
0

Resumen del Recurso

Computer science algorithm.
  1. Machine learn
    1. why Used
      1. Decisions about data
        1. Learn
          1. From data
        2. Scientists Says:
          1. Set of techniques
            1. Inside
              1. Even more ambitious goal
                1. Artificial inteligence
          2. What they do conceptualy
            1. Clasification
              1. Clasify some thing
                1. Analyzing
                  1. Data
                2. Algorithm name
                  1. Clasifier
                    1. Features
                      1. Values that usefully
                        1. Characterize
                          1. Things
                            1. we whish to clasify
                        2. Example
                          1. Moth Clasifier
                            1. 2 -Features
                              1. Wingspan
                                1. Mass
                                2. Training Data
                                  1. Entomologist
                                    1. Colect Data to process
                                      1. Luna
                                        1. Emperor moths
                                          1. Labeled Data

                                            Nota:

                                            • LAbel data is a Tabel which and especialisty classify the kind of subject he is searching giving them some classification acordingly with its features. Whic is some values sizes or references to comparation.
                                  2. Represent lines in graphs
                                    1. X
                                      1. WingSpan
                                        1. Space
                                        2. Y
                                          1. Mass
                                            1. Time
                                          2. used to
                                            1. plot Data
                                              1. overlap
                                                1. Meaning
                                                  1. To have something in comon
                                                    1. TO ocupy the same area in part
                                                    2. Machine Learn Algorithm
                                                      1. Find Optimal
                                                        1. Seplaratkon
                                                          1. Clasification
                                                            1. Condition
                                                              1. X-axis
                                                                1. X(Wing Span) < 45 mm
                                                                  1. Emperor Moth
                                                                2. Y-axis
                                                                  1. Y(mass) < .75
                                                                    1. Emperor Moth

                                                                      Nota:

                                                                      • So It takes both features to consideration and clasify within the group which one is an emperor moth and which one is the emperor moth
                                                    3. Training Data
                                                      1. Some especialist
                                                        1. Colect & Organize
                                                          1. Data
                                                  2. BAsicaly compare
                                                    1. Images
                                                      1. Sound
                                                        1. Touch
                                                        2. Decision Tree
                                                            1. Algorithm forests
                                                              1. Contains alot tree algorithm
                                                            2. Support vector machine
                                                              1. Dry lines in the graph
                                                                1. Polynomials
                                                                  1. other fancy math mathematical function
                                                                    1. To find the most accurate decision baundaries
                                                                    2. 3 lines 3D decision baundaries
                                                                2. algorithm
                                                                  1. Job
                                                                    1. at a high level
                                                                      1. Maximize
                                                                        1. Correct classification

                                                                          Nota:

                                                                          • The algorith compare the data given to it. And try to organize in the most efective way the subejcts and informations given o it.
                                                                        2. Minimize errors
                                                                    2. Artificial Neural Network
                                                                      1. Neurons
                                                                        1. Cells
                                                                          1. Process
                                                                            1. one or more impulses
                                                                              1. from other cells
                                                                            2. Transmit
                                                                              1. Messsges
                                                                                1. using
                                                                                  1. Signals
                                                                                    1. Electrical
                                                                                      1. chemical
                                                                                  2. Their own signal to other cells
                                                                              2. Artificial Neurons
                                                                                1. Take a series of inputs
                                                                                  1. Combine them
                                                                                    1. Emits a signal

                                                                                      Nota:

                                                                                      • Rather than beig electrical or chemical signals, artificial neurons take numbers in and spit numbers out.
                                                                                  2. Takes data entry
                                                                                    1. Process
                                                                                      1. artifical neral network
                                                                                        1. organize and analyze features
                                                                                          1. Spit out the information
                                                                                    2. First Layer
                                                                                      1. Imput Layer
                                                                                        1. Data needing classification
                                                                                          1. X-axis
                                                                                            1. Wing Span
                                                                                              1. Space
                                                                                              2. Y-axis
                                                                                                1. Mass
                                                                                                  1. Time
                                                                                            2. Last layer
                                                                                              1. Output layer
                                                                                                1. Emperor Moth
                                                                                                  1. Luna Moth
                                                                                                    1. Activation Function or transfer function
                                                                                                      1. Perform a final mathematical modifications
                                                                                                        1. To result
                                                                                                          1. For example
                                                                                                            1. Limiting value to a range
                                                                                                              1. from -1 to +1
                                                                                                              2. seting any negative values
                                                                                                                1. To zero
                                                                                                    2. Classification Decision
                                                                                                      1. Hidden Layer
                                                                                                        1. transform
                                                                                                          1. Input
                                                                                                            1. into
                                                                                                              1. Out put
                                                                                                          2. Does
                                                                                                            1. The hard work of classification
                                                                                                            2. Aply the BIAS
                                                                                                              1. A fixed value to sum or subtract
                                                                                                                1. Random
                                                                                                                  1. when a neural network is created
                                                                                                                    1. an algorithm goes in and starts tweaking
                                                                                                                      1. All those values to train the neural network
                                                                                                                        1. using
                                                                                                                          1. Label data
                                                                                                                            1. For training and testing
                                                                                                                              1. a process very much like Human learning
                                                                                                            3. were invented
                                                                                                              1. over fifty years ago
                                                                                                        Mostrar resumen completo Ocultar resumen completo

                                                                                                        Similar

                                                                                                        How to Write a Program with the Seven Steps
                                                                                                        Luiz Porto
                                                                                                        Ecuaciones diferenciales lineales de segundo orden
                                                                                                        Juan Beltran
                                                                                                        ENFERMERÍA HOSPITALARIA
                                                                                                        celuzcabascango
                                                                                                        La transición a la democracia
                                                                                                        ignaciobll
                                                                                                        Nivel de Inglés
                                                                                                        Diego Santos
                                                                                                        Mapa Mental Estructura gramatical presente simple inglés
                                                                                                        JOWANI BELLO MELO
                                                                                                        ESTADO DE FLUJOS DE EFECTIVO
                                                                                                        Christian Muñoz
                                                                                                        LAS TIC APLICADAS A LA INVESTIGACIÓN
                                                                                                        tereacevedobtr
                                                                                                        ENGLISH CLASS FUTURE FORMS
                                                                                                        pablomac8
                                                                                                        lipidos laboratorio biologia
                                                                                                        Miguel Angel Espinosa
                                                                                                        PRINCIPIO DE OPORTUNIDAD DEL MINISTERIO PÚBLICO ART. 256
                                                                                                        ConsentidadeDios