Differentiation

Descripción

Mapa Mental sobre Differentiation, creado por bill.backster el 25/06/2013.
bill.backster
Mapa Mental por bill.backster, actualizado hace más de 1 año
bill.backster
Creado por bill.backster hace más de 11 años
99
0

Resumen del Recurso

Differentiation
  1. basic diff formulas
    1. chain Rule
      1. g[f(x)} = g'[f(x)]*f'(x)
      2. Product Rule
        1. f(x)*g(x) = f'(x)*g(x) + f(x)*g'(x)
          1. UV = U'V + UV'
        2. Quotient Rule
          1. f(x)/g(x) = {f'(x)*g(x) - f(x)*g'(x)}/[g(x)]^2
            1. U/V = {U'V - UV'}/V^2
        3. Notation
          1. f'(x)
            1. dy/dx
              1. d/dx
                1. y'
                  1. Dx{f(x)}
                  2. diff Rules
                    1. Exponential and Logarithmic Functions
                      1. trig functions
                        1. second Derivitives
                          1. f''(x)
                            1. [d^2y] / [dx^2]
                              1. To double diff simply diff your original function and then diff it again to finf the double diff.
                              2. Basic functions
                                1. on graphs
                                  1. f'(x) = 0 stationary point
                                    1. nature of stationary points
                                      1. maximum when double diff < 0
                                        1. minimum when double diff > 0
                                    2. applications
                                      1. diff = 0 to find speed and velocity
                                        1. double diff to get the acceleration
                                          1. continuous - differentiable
                                            1. dis-continuous- non differentiable
                                              1. average rate of change = (y2-y1)/(x2-x1)
                                              2. tangents to curves
                                                1. gradient of tangent = diff at certain point.
                                                  1. equation y=mx+c using gradient found above sub in points to find C
                                                    1. equation of normal flip the gradient of tangent and use same method to find equation.
                                              Mostrar resumen completo Ocultar resumen completo

                                              Similar

                                              A-level Maths: Key Differention Formulae
                                              humayun.rana
                                              A-level Maths: Key Differention Formulae
                                              Andrea Leyden
                                              AQA Biology 12.1 cellular organisation
                                              Charlotte Hewson
                                              Formulas to remember: C3
                                              kerihowe1997
                                              1.1 Introduction to Cells
                                              Elisabeth Morell
                                              VCE biology Units one and two: Unit two - Cell cycle, asexual and sexual reproduction, meiosis, cell growth and differentiation
                                              Sherlock Holmes
                                              maths- PC1- Differentiation
                                              evie.daines
                                              Differentiation
                                              Vivienne Holmes
                                              Graphical Representations of Differentiation
                                              Niamh Ryan
                                              Biology Mock (Topics 1, 2, 3, 4)
                                              Ben Tomsett
                                              Calculus
                                              Sophia Chang