Ley de composición externa

Descripción

Mapa Mental sobre Ley de composición externa, creado por jorgenaranjo1989 el 19/10/2014.
jorgenaranjo1989
Mapa Mental por jorgenaranjo1989, actualizado hace más de 1 año
jorgenaranjo1989
Creado por jorgenaranjo1989 hace alrededor de 10 años
465
0

Resumen del Recurso

Ley de composición externa
  1. En símbolos
    1. es ley externa en A con operadores en B ⇔ Bx A → A es decir, si b B ∈ y a A ∈ la imagen del par (b ; a) = b ∗ a ∈ A
      1. Según las propiedades que deban satisfacer estas leyes de composición, se tienen los distintos tipos de estructuras ó sistemas axiomáticos.
        1. Monoide
          1. El par (A , ∗ ) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna ∗ se denomina monoide.
            1. Ejemplos de monoides
              1. ( N , + ) , ( Z , + ) , ( Q , + ) , son monoides. ( N , - ) no es un monoide porque la sustracción no es ley de composición interna en N. ( N , ∗ ) donde ∗ está definido como a ∗ b = máx.{a , b} es un monoide.
          2. Semigrupo
            1. Un monoide asociativo se denomina semigrupo.
              1. Si la ley de composición interna también es conmutativa se llama semigrupo conmutativo. Si existe el elemento neutro se dice que es un semigrupo con unidad ó semigrupo con identidad. El elemento neutro de llama identidad.
                1. Ejemplos de semigrupos ( N , + ) es un semigrupo conmutativo sin elemento neutro. ( N 0 , + ) es un semigrupo conmutativo con elemento neutro, el 0. ( N , • ) es un semigrupo conmutativo con elemento neutro ó identidad igual a 1.
            2. Grupo
              1. Sea el par (A , ∗ ) , donde A es un conjunto no vacío dotado de una ley de composición interna binaria
                1. (A , ∗ ) es un grupo ó se define sobre A una estructura de grupo sí: a) ∗ es asociativa. Es decir a ∀ , b ∀ , c ∀ : a, b, c ∈ A ⇒ ( ) ( ) a b c a b c ∗ ∗ = ∗ ∗ b) ∗ posee elemento neutro en A. Es decir e A ∃ ∈ / a ∀ , si a A ∈ ⇒ a e e a a ∗ = ∗ = c) Todo elemento de A es invertible en A respecto de ∗ . Es decir a A ∀ ∈ , a ´ A ∃ ∈ / a a ´ a ´ a e
              2. Grupo Abeliano ó Grupo conmutativo
                1. es cuando además de ser un grupo, d) ∗ es conmutativa. Es decir a ∀ , b ∀ : a, b ∈ A a b b a ⇒ ∗ = ∗ Si G = (A , ∗ ) es un grupo, se dice que es un grupo finito si el conjunto A es finito y su cardinal se llama orden del grupo.
                  1. Ejemplos 1) El par ( Z , ∗ ) donde Z es el conjunto de los números enteros y ∗ es una operación definida como a ∗ b = a + b + 3 forma un grupo abeliano. Comprobación: ∗ es una ley de composición interna en Z pues si a y b ∈ Z , a + b + 3 ∈ Z ∗ es asociativa pues ( ) a b c ∗ ∗ = (a + b +3) ∗ c = a + b +3 + c +3 = a + b + c + 6 y ( ) a b c ∗ ∗ = a ∗ (b + c + 3) = a + b + c + 3 + 3 = a + b + c + 6 ∗ tiene elemento neutro e = –3 , pues a A ∀ ∈ , a ∗ e = a entonces a + e +3 = a ⇒ e = –3 y e ∗ a = a entonces e + a + 3 = a ⇒ e = –3 tiene inverso a , a / a a e ′ ′ ∀ ∃ ∗ = , en nuestro caso a a′ ∗ = –3 ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a derecha a a 3 ′ ∗ = − ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a izquierda ∗ es conmutativa pues a b ∗ = a + b + 3 = b + a + 3 = b a
                    1. Otros ejemplos: 1 ) ( Z , + ) ; ( Q , + ) ; ( R , + ) y ( C , + ) Son grupos abelianos . También se llaman grupos aditivos debido a la operación aditiva. 2 ) ( N , + ) No es grupo. No tiene neutro ni inverso de cada elemento. 3 ) ( N 0 , + ) No es grupo. Tiene neutro, el 0 , pero no tiene inverso aditivo. 4 ) ( Q , • ) No es grupo, el 0 no tiene inverso multiplicativo. 5 ) ( R , • ) No es grupo, el 0 no tiene inverso multiplicativo. 6 ) ( Q – { 0 } , • ) y ( R – { 0 } , • ) Son grupos.
          Mostrar resumen completo Ocultar resumen completo

          Similar

          Comunidades Autónomas de España y sus Capitales
          maya velasquez
          Los Reyes Católicos y la Organización del Estado
          maya velasquez
          Freud: Interpretación de los sueños
          Cesar_Adolfo
          Quiz sobre el Sistema Internacional de Unidades (SI)
          Raúl Fox
          Mecanismos de cohesión
          Diego Santos
          Romanticismo literario del S. XIX
          maya velasquez
          Vocabulario aspecto físico (FRANCÉS)
          batcot96
          Les Métiers
          Katia García López
          DERECHO MERCANTIL
          Juan Jose Avila Espinoza
          PRINCIPIO DE OPORTUNIDAD DEL MINISTERIO PÚBLICO ART. 256
          ConsentidadeDios