Diseño de experimentos clásicos

Descripción

Mapa Mental sobre Diseño de experimentos clásicos, creado por laura karen beltran el 05/02/2019.
laura karen beltran
Mapa Mental por laura karen beltran, actualizado hace más de 1 año
laura karen beltran
Creado por laura karen beltran hace casi 6 años
17
0

Resumen del Recurso

Diseño de experimentos clásicos
  1. Asignación

    Nota:

    • Asignación de las unidades experimentales a los tratamientos.
    1. Repetición

      Nota:

      • Repetición del experimento.
      1. Homogeneidad

        Nota:

        • Homogeneidad estadística de las comparaciones.
        1. Aleatorización

          Nota:

          • Principio de aleatorización, las variables no controlables se asignan al azar.
          1. Diseño Aleatorizado

            Nota:

            • Asigna las unidades experimentales a los tratamientos al azar. La única restricción es el número de observaciones que se toman en cada tratamiento.
            1. Forma: Respuesta = Constante + Efecto tratamiento + Error
              1. No incluyen factores bloque
              2. Diseño en bloques o con un factor bloque

                Nota:

                • Agrupa las unidades experimentales en bloques, a continuación determina la distribución de los tratamientos en cada bloque y, por último, asigna al azar las unidades experimentales a los tratamientos dentro de cada bloque.
                1. Agrupa unidades en bloques
                  1. Forma: Respuesta = Constante+ Efecto bloque+ Efecto tratamiento + Error
                    1. diseño en bloques completos

                      Nota:

                      • en el que cada tratamiento se observa el mismo número de veces en cada bloque.
                      1. diseño en bloques completamente aleatorizado

                        Nota:

                        • El diseño en bloques completos con una única observación por cada tratamiento
                        1. diseño en bloques incompletos

                          Nota:

                          • tamaño del bloque es inferior al número de tratamientos no es posible observar la totalidad de tratamientos en cada bloque
                        2. Diseños con dos o más factores bloque.
                          1. Forma:Respuesta = Constante + Efecto bloque fila+ Efecto bloque columna+ Efecto tratamiento + Error
                            1. cruzados o anidados

                              Nota:

                              • hay dos (o más) fuentes de variación lo suficientemente importantes como para ser designadas factores de bloqueo
                              1. Anidados

                                Nota:

                                • si cada nivel particular de uno de los factores bloque ocurre en un único nivel del otro factor bloque.
                                1. Cruzados

                                  Nota:

                                  • Cuando existen unidades experimentales en todas las combinaciones posibles de los niveles de los factores bloques.
                                2. Diseño fila-columna

                                  Nota:

                                  • se caracteriza porque existen unidades experimentales en todas las celdas(intersecciones de fila y columna).
                                  1. Diseño con factores bloque anidados o jerarquizados

                                    Nota:

                                    • Dos factores bloque se dicen anidados cuando observaciones pertenecientes a dos niveles distintos de un factor bloque están automáticamente en dos niveles distintos del segundo factor bloque.
                                  2. Diseños con dos o más factores.

                                    Nota:

                                    • es importante estudiar la posible interacción entre los dos factores. Si en cada casilla se tiene una única observación no es posible estudiar la interacción entre los dos factores, para hacerlo hay que replicar el modelo, esto es, obtener k observaciones en cada casilla, donde k es el número de réplicas.
                                    1. Replicar

                                      Nota:

                                      •  hay que replicar el modelo, esto es, obtener k observaciones en cada casilla, donde k es el número de réplicas.
                                      1. Fracciones Factoriales

                                        Nota:

                                        • diseños en los que se supone que muchas de las interacciones son nulas, esto permite estudiar el efecto de un número elevado de factores con un número relativamente pequeño de pruebas.
                                        1. Cuadro latino

                                          Nota:

                                          • En el que se supone que todas las interacciones son nulas, permite estudiar tres factores de k niveles con solo k2 observaciones.
                                          1. Diseño equilibrado completo

                                            Nota:

                                            • se necesitan k3 observaciones.
                                          2. Diseños factoriales a dos niveles.
                                            1. Se trabaja con k factores

                                              Nota:

                                              • Todos ellos con dos niveles (se suelen denotar + y -)
                                              1. fracciones factoriales 2k-p

                                                Nota:

                                                • Estos diseños son adecuados para tratar el tipo de problemas descritos porque permiten trabajar con un número elevado de factores y son válidos para estrategias secuenciales.
                                                1. k son factores o dos niveles

                                                  Nota:

                                                  • Mantienen la propiedad de ortogonalidad de los factores y donde se suponen nulas las interacciones de orden alto
                                                  1. p son numero de observaciones

                                                    Nota:

                                                    • cuanto mayor sea p menor número de observaciones se necesita pero mayor confusión de efectos se supone
                                                2. RESPUESTA / variable dependiente:

                                                  Nota:

                                                  • de interés para el estudio, se supone continua.
                                                  1. FACTOR / variable independiente

                                                    Nota:

                                                    • Variable discreta que puede influir en la respuesta, se supone controlada por el experimentador.
                                                    1. NIVEL O TRATAMIENTO:

                                                      Nota:

                                                      • Posible valor que puede tomar un factor
                                                      1. UNIDAD EXPERIMENTAL

                                                        Nota:

                                                        • Objeto donde se obtienen las mediciones de la repuesta (combinación de niveles de los factores considerados).
                                                        1. REPLICAS

                                                          Nota:

                                                          • Número de veces que se observa la respuesta en cada combinación de niveles considerada.
                                                          1. INTERACCIÓN

                                                            Nota:

                                                            • Efecto debido a la combinación de niveles de distintos factores.
                                                            1. BLOQUE:

                                                              Nota:

                                                              • Variable cuyo efecto sobre la repuesta no es directamente de interés, se supone que no tiene interacción con los factores 

                                                              Recursos multimedia adjuntos

                                                              Mostrar resumen completo Ocultar resumen completo

                                                              Similar

                                                              Seis Sigma
                                                              Armando Mares
                                                              DISEÑOS DE EXPERIMENTOS CLÁSICOS
                                                              Noelia R
                                                              Diseño de experimentos
                                                              rosangela martinez romero
                                                              DISEÑOS DE EXPERIMENTOS CLÁSICOS
                                                              fabian valbuena franco
                                                              Enseñar con Fichas de Memoria
                                                              Diego Santos
                                                              HISTORIA de ESPAÑA
                                                              Ulises Yo
                                                              MAPA DE IDEAS
                                                              fumbapirane
                                                              AMÉRICA: PAÍSES~CAPITALES...
                                                              Ulises Yo
                                                              Ácidos, bases y sales - Formulación y nomenclatura
                                                              pedro.casullo
                                                              MAPA CONCEPTUAL CAP 1 GERENCIA ESTRATEGICA
                                                              DAVID ARCE
                                                              Flujo grama de distribución de egresos.
                                                              danny guacas