null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
2445381
Boolean Algebra Laws
Descripción
Mapa Mental sobre Boolean Algebra Laws, creado por gargantua el 06/04/2015.
Mapa Mental por
gargantua
, actualizado hace más de 1 año
Más
Menos
Creado por
gargantua
hace más de 9 años
427
1
0
Resumen del Recurso
Boolean Algebra Laws
3 Operations on Sets (Set Theory)
Intersection ∩
Negation Law: A ∩ ~A = Empty Set
This means: All elements that are both in the set and not in the set (nothing is both in the basket and outside the basket)
Unit Law: Universal ∩ A = A
This means: What are the elements in both A and the Universe? Being that A is a finite set, it confines the result to the elements only in A...
IE: How to get the same element by ∩ with something (Unit) ?
Elements in both sets
Idempotent Law: A ∩ A = A
Remember: Idempotent means Unchanged in value following operation on itself.
We can safely intersect anything with itself and the set will remain the same
Associative Law: (A ∩ B) ∩ C = A ∩ (B ∩ C)
Commutative Law: A ∩ B = B ∩ A
Distributive Law: A ∩ (B v C) = A ∩ B v A ∩ C
De Morgan's: ~(A ∩ B) = ~A ∪ ~B
Union ∪
Negation Law: A ∪ ~A = Universal
This means: All elements in the set OR not in the set (everything)
Elements in at least one set (or)
Unit Law: Empty Set ∪ A = A
Commutative Law: A ∪ B = B ∪ A
Remember: Commutative means order of operands does not matter
We can change order of operands
Elements in at least one of A or B = Elements in at least B or A
Associative Law: (A ∪ B) ∪ C = A ∪ (B ∪ C)
Remember: Association means the order of operations does not matter
We can change order of operation
De Morgan's: ~(A ∪ B) = ~A ∩ ~B
Complement ~
Double Complement Law: ~~A = A
Universal Set
Truth is universal
Empty Set
3 Operations on Prepositions (Boolean Logic)
AND ^
Negation Law: P ^ ~P = F
Unit Law: P ^ T = P
Idempotent Law: P ^ P = P
Associative Law: (p ^ q) ^ r = p ^ (q ^ r)
Commutative Law: P ^ Q = P ^ Q
Distributive Law: P ^ (Q V R) = P ^ Q v P ^ R
Remember: Distribution means outer operation gets "distributed"/repeated over inner operations
We can "pull" repeated operation over operands
De Morgan's: ~(P ^ Q) = ~P v ~Q
OR v
Negation Law: P V ~P = T
Unit Law: P V F = P
Commutative Law: P v Q = P v Q
Associative Law: (p v q) v r = p v (q v r)
De Morgan's: ~(P v Q) = ~P ^ ~Q
Remember: De Morgan's Law says: We can distribute negation over the operands if we flip the operation (and becomes or)
Similarly, we can "pull" negation over operands if we flip the operation
Negation ~
Double Negation Law: ~~P = P
TRUE
FALSE
Lies are empty
Recursos multimedia adjuntos
f3c23ba3-5aa7-44b0-a046-c419b840a479 (image/png)
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
Test sobre la Organización del Estado de Los Reyes Católicos
maya velasquez
20 preguntas sobre sistemas operativos
esmeraldameza100
Principios de Psicología
anrago63
Fichas Verbos inglés presente, pasado y participio (131)
JOWANI BELLO MELO
MATEMÁTICAS: ARITMÉTICA...
Ulises Yo
Plantilla para Presentar Trabajos con Mapas Mentales
Diego Santos
Autores vacío
Manu prieto
LEY 1/2000 ENJUICIAMIENTO CIVIL: "De los procesos matrimoniales y de menores" (III)
Miguel Angel del Rio
Ciencias Sociales 2
Pablo Díaz Vera
Buscar en Google
Maru RAmos
DIPTONGO O HIATO
Silvia Rial Martínez
Explorar la Librería