null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
2445381
Boolean Algebra Laws
Descripción
Mapa Mental sobre Boolean Algebra Laws, creado por gargantua el 06/04/2015.
Mapa Mental por
gargantua
, actualizado hace más de 1 año
Más
Menos
Creado por
gargantua
hace más de 9 años
403
1
0
Resumen del Recurso
Boolean Algebra Laws
3 Operations on Sets (Set Theory)
Intersection ∩
Negation Law: A ∩ ~A = Empty Set
This means: All elements that are both in the set and not in the set (nothing is both in the basket and outside the basket)
Unit Law: Universal ∩ A = A
This means: What are the elements in both A and the Universe? Being that A is a finite set, it confines the result to the elements only in A...
IE: How to get the same element by ∩ with something (Unit) ?
Elements in both sets
Idempotent Law: A ∩ A = A
Remember: Idempotent means Unchanged in value following operation on itself.
We can safely intersect anything with itself and the set will remain the same
Associative Law: (A ∩ B) ∩ C = A ∩ (B ∩ C)
Commutative Law: A ∩ B = B ∩ A
Distributive Law: A ∩ (B v C) = A ∩ B v A ∩ C
De Morgan's: ~(A ∩ B) = ~A ∪ ~B
Union ∪
Negation Law: A ∪ ~A = Universal
This means: All elements in the set OR not in the set (everything)
Elements in at least one set (or)
Unit Law: Empty Set ∪ A = A
Commutative Law: A ∪ B = B ∪ A
Remember: Commutative means order of operands does not matter
We can change order of operands
Elements in at least one of A or B = Elements in at least B or A
Associative Law: (A ∪ B) ∪ C = A ∪ (B ∪ C)
Remember: Association means the order of operations does not matter
We can change order of operation
De Morgan's: ~(A ∪ B) = ~A ∩ ~B
Complement ~
Double Complement Law: ~~A = A
Universal Set
Truth is universal
Empty Set
3 Operations on Prepositions (Boolean Logic)
AND ^
Negation Law: P ^ ~P = F
Unit Law: P ^ T = P
Idempotent Law: P ^ P = P
Associative Law: (p ^ q) ^ r = p ^ (q ^ r)
Commutative Law: P ^ Q = P ^ Q
Distributive Law: P ^ (Q V R) = P ^ Q v P ^ R
Remember: Distribution means outer operation gets "distributed"/repeated over inner operations
We can "pull" repeated operation over operands
De Morgan's: ~(P ^ Q) = ~P v ~Q
OR v
Negation Law: P V ~P = T
Unit Law: P V F = P
Commutative Law: P v Q = P v Q
Associative Law: (p v q) v r = p v (q v r)
De Morgan's: ~(P v Q) = ~P ^ ~Q
Remember: De Morgan's Law says: We can distribute negation over the operands if we flip the operation (and becomes or)
Similarly, we can "pull" negation over operands if we flip the operation
Negation ~
Double Negation Law: ~~P = P
TRUE
FALSE
Lies are empty
Recursos multimedia adjuntos
f3c23ba3-5aa7-44b0-a046-c419b840a479 (image/png)
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
Los reyes católicos: La integración de las coronas
maya velasquez
Tablas de multiplicar
Carmen Giralda
TARJETAS ESTUDIO CUERPOS GEOMÉTRICOS
Ruth Pérez Sánchez
Disoluciones
Victor Rodriguez
MAPA DE IDEAS
fumbapirane
Mapa conceptual
Franchesk Maestr
Sistemas Constructivos en Edificaciones
mvargasch.mv
Historia de Colombia
orfavictoria
Recursos Didácticos
capomo.tutuli
Comunicacion Efectiva
ROBERTO MACIAS
NIC 1
Diego Bejarano
Explorar la Librería