null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
245621
Tema 1: El oscilador armónico
Descripción
Mapa Mental sobre Tema 1: El oscilador armónico, creado por DianaArias el 02/10/2013.
Sin etiquetas
oscilador armónico
Mapa Mental por
DianaArias
, actualizado hace más de 1 año
Más
Menos
Creado por
DianaArias
hace alrededor de 11 años
126
1
0
Resumen del Recurso
Tema 1: El oscilador armónico
Movimiento oscilatorio
Se trata de un movimiento de vaivén
Producido en torno a una posición de equilibrio
Las FUERZAS están equilibradas
Se produce siempre sobre la misma trayectoria
Las oscilaciones se producen cuando el cuerpo (OSCILADOR) se mueve de la posición de equilibro
Estas oscilaciones se repiten por la tendencia de la naturaleza al equilibrio
Movimiento armónico simple (m.a.s.)
Magnitudes básicas
PERIODO (T): Tiempo (s) que tarda el cuerpo en efectuar una oscilación completa
FRECUENCIA (f): Número de oscilaciones (s^-1) realizadas por segundo
ELONGACIÓN (x,y): Distancia a la posición de equilibrio (m)
Sus valores están comprendidos entre A y -A
AMPLITUD (A): Máxima elongación (m)
ECUACIÓN GENERAL
x = A · cos (2pi/T · t + fi)
Las funciones seno y coseno cumplen las propiedades de un m.a.s.
Valores máx y mín 1 y -1
Repiten periódicamente sus valores
fi es la fase inicial, y es un valor en función de la posición del oscilador al iniciar la medida de tiempo
2pi/T = omega = frecuencia angular o pulsación
Cinemática m.a.s.
Velocidad
Nula en extremos (A, -A)
Máxima en punto de equilibrio
Varía sinusoidalmente con el tiempo, y por tanto la posición
v = omega por raíz de (A^2 - x^2)
Aceleración
Nula en el punto de equilibrio
Máxima en extremos (A, -A)
Proporcional a la elongación y de signo opuesto
a = -omega^2 · x
Dinámica m.a.s.
Ley de Hooke
La fuerza restauradora de un muelle es directamente proporcional a su deformación
F = -k · x
x = deformación
k = constante elástica
Periodo
Depende de la masa y de la constante elástica del muelle
T = 2pi ·(m/k)^1/2
T = 2pi · (l/g)^1/2
Energía m.a.s.
Teorema de las fuerzas vivas o teorema del trabajo-energía
El trabajo realizado por todas las fuerzas que actúan sobre el cuerpo se invierte en modificar su energía cinética
En el caso de un m.a.s., son las fuerzas recuperadoras
Energía cinética
E = 1/2 m · v^2
E = 1/2 k (A^2 - x^2)
Fuerzas
Conservativas
Fuerzas capaces de restituir el trabajo realizado sobre un cuerpo
Disipativas
Fuerzas que hacen que la energía del cuerpo se pierda, disipada
Si no las hay, no hay rozamiento
Si no hay rozamiento la Energía mecánica no varía
Conservación energía mecánica
Si sobre un cuerpo sólo realizan trabajo fuerzas conservativas la energía mecánica se conserva
Energía potencial
El trabajo relizado por fuerzas conservativas es igual a la disminución de la energía potencial
Péndulo simple
Es comparable con un m.a.s. si su amplitud es muy pequeña
Una masa suspendida de un punto fijo mediante un hilo no elástico oscila y/o se suelta
Su posición de equilibrio es la posición vertical
El peso tiene dos componentes
Una provoca el movimiento
Una mantiene la tensión
Py = -T
La aceleración es tangente a la trayectoria
a = -g · x/l
Frecuencia y periodo
omega^2 = g/l
T = 2pi (l/g)^1/2
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
Francés - Vocabulario Básico
maya velasquez
20) Negative personality
John Goalkeeper
Presentaciones en Inglés
Diego Santos
Estrategias de Enseñanza Alternativas
Diego Santos
Test para Practicar para el TOEFL
Lolo Reyes
Nivel de Inglés
Diego Santos
Mecanismos de cohesión
Diego Santos
Examen informática
Cova M
Extra French: Serie en francés subtitulada en francés
Michel Gomez
Hormonas corticotroficas
Néstor León Arbulú
Flujos de salida
Alma Fer
Explorar la Librería