Teorema de Limites

Descripción

Pasos por ingeniería [ Pasos por ingeniería]. (2020 Septiembre 08). CÁLCULO DIFERENCIAL E INTEGRAL. [Video]. Recuperado de https://www.youtube.com/playlist?list=PL46-B5QR6sHk3ad29jP13CidB2m46fKBf José L. Fernández. (). Continuidad de Funciones. www.fisicalab.com Recuperado de https://www.fisicalab.com/apartado/continuidad-funciones
Delfi Ramiz
Mapa Mental por Delfi Ramiz, actualizado hace más de 1 año
Delfi Ramiz
Creado por Delfi Ramiz hace alrededor de 4 años
247
0

Resumen del Recurso

Teorema de Limites

Nota:

  • Pasos por ingeniería [ Pasos por ingeniería]. (2020 Septiembre 08). CÁLCULO DIFERENCIAL E INTEGRAL. [Video]. Recuperado de https://www.youtube.com/playlist?list=PL46-B5QR6sHk3ad29jP13CidB2m46fKBf José L. Fernández. (). Continuidad de Funciones. http://www.fisicalab.com Recuperado de https://www.fisicalab.com/apartado/continuidad-funciones
  1. Teorema 1: Límite de una función constante.

    Nota:

    • Si  k es una constante y  a un número cualquiera, entonces: Lím f(x) =  Lím k =  k x->a           x->a
    1. Teorema 2: Límite de f(x)=x.

      Nota:

      • Para cualquier número dado a: Lim f(x) =  Lim x =  a x->a          x->a
      1. Teorema 3: Límite de una función multiplicada por una constante.

        Nota:

        • Sea k una constante y f(x) una función dada. entonces: Lim k f(x)  =  k Lim f(x) x->a              x->a
        1. Teorema 4: Límite de una suma, diferencia, producto y cociente de funciones

          Nota:

          • Supóngase que: Lim F(x) = L1  y  Lim G(x) = L2 x->a                    x->a  Entonces: 1.Lim[ F(x)+G(x) ] = L1 + L2  x->a 2. Lim[ F(x) - G(x) ] = L1 - L2 x->a 3. Lim[ F(x) G(x) ] = L1 * L2 x->a 4. Lim[ F(x) / G(x) ] = L1 / L2  x->asi L2 no es igual a cero
          1. Teorema 5: Límite de una potencia.
            1. Teorema 6: Límite de un polinomio.

              Nota:

              • El límite de un polinomio. Sea f(x) una función polinomial, entonces:  Lim f(x) = f(a) x->a
              1. Teorema 7: Límite de una función racional.

                Nota:

                • Sea f(x)=p(x)/q(x) un cociente de polinomios, entonces: Lim f(x) = p(a)/q(a) x->asi q(a) no es cero
                1. Teorema 8: Límite de una función que contiene un radical.

                  Nota:

                  • Si a>0 y n es cualquier entero positivo, o si a<0 y n es un entero positivo impar, entonces: Lim x^(1/n) = a^(1/n) x->a 
                  1. Teorema 9: El límite de una función compuesta.

                    Nota:

                    • Si f y g son funciones tales que: Lim g(x) = L   y   Lim f(x) = f(L) x->a                    x->L entonces: Lim f [g(x)] = f(L) x->a
                    1. Determinación de continuidad de una función
                      1. 1.- Que el punto x = a tenga imagen.

                        Nota:

                        • Debemos verificar que la función esté definida en el punto . En otras palabras, que  pertenezca al dominio de f(x).
                        1. 2.- Que exista el límite de la función en el punto x = a.

                          Nota:

                          • El límite en el punto  existe si tiene límites por la derecha y por la izquierda y estos valores son iguales.
                          1. 3 Que la imagen del punto x=a coincida con el límite de la función en el punto.

                            Nota:

                            • Es necesario que el valor de la imagen sea igual que el valor del límite.
                          Mostrar resumen completo Ocultar resumen completo

                          Similar

                          Tabla Periódica de los Elementos
                          maya velasquez
                          Universidades de Latinoamérica
                          Diego Santos
                          Martin Luther King, Jr.
                          maya velasquez
                          Anatomía cabeza
                          Diego Santos
                          Rol del profesor y del estudiante dentro del aprendizaje
                          Rita Serrano
                          Ácidos, bases y sales - Formulación y nomenclatura
                          pedro.casullo
                          Tejido nervioso
                          Lenin Ruiz Viruel
                          3. La independencia de la América Hispana (1808-1826)
                          albavillenerals
                          PSICOLOGIA ORGANIZACIONAL
                          Claudia Elena Sepúlveda Roldán
                          CUADRO SINÓPTICO DE LOS TRASTORNOS DE LA PERSONALIDAD
                          Luz Contreras
                          CLASIFICACIÓN DE TEXTO : Tipos de texto
                          Paula Andrea Cabeza Nova