Teorema de Limites

Descripción

Pasos por ingeniería [ Pasos por ingeniería]. (2020 Septiembre 08). CÁLCULO DIFERENCIAL E INTEGRAL. [Video]. Recuperado de https://www.youtube.com/playlist?list=PL46-B5QR6sHk3ad29jP13CidB2m46fKBf José L. Fernández. (). Continuidad de Funciones. www.fisicalab.com Recuperado de https://www.fisicalab.com/apartado/continuidad-funciones
Delfi Ramiz
Mapa Mental por Delfi Ramiz, actualizado hace más de 1 año
Delfi Ramiz
Creado por Delfi Ramiz hace alrededor de 4 años
246
0

Resumen del Recurso

Teorema de Limites

Nota:

  • Pasos por ingeniería [ Pasos por ingeniería]. (2020 Septiembre 08). CÁLCULO DIFERENCIAL E INTEGRAL. [Video]. Recuperado de https://www.youtube.com/playlist?list=PL46-B5QR6sHk3ad29jP13CidB2m46fKBf José L. Fernández. (). Continuidad de Funciones. http://www.fisicalab.com Recuperado de https://www.fisicalab.com/apartado/continuidad-funciones
  1. Teorema 1: Límite de una función constante.

    Nota:

    • Si  k es una constante y  a un número cualquiera, entonces: Lím f(x) =  Lím k =  k x->a           x->a
    1. Teorema 2: Límite de f(x)=x.

      Nota:

      • Para cualquier número dado a: Lim f(x) =  Lim x =  a x->a          x->a
      1. Teorema 3: Límite de una función multiplicada por una constante.

        Nota:

        • Sea k una constante y f(x) una función dada. entonces: Lim k f(x)  =  k Lim f(x) x->a              x->a
        1. Teorema 4: Límite de una suma, diferencia, producto y cociente de funciones

          Nota:

          • Supóngase que: Lim F(x) = L1  y  Lim G(x) = L2 x->a                    x->a  Entonces: 1.Lim[ F(x)+G(x) ] = L1 + L2  x->a 2. Lim[ F(x) - G(x) ] = L1 - L2 x->a 3. Lim[ F(x) G(x) ] = L1 * L2 x->a 4. Lim[ F(x) / G(x) ] = L1 / L2  x->asi L2 no es igual a cero
          1. Teorema 5: Límite de una potencia.
            1. Teorema 6: Límite de un polinomio.

              Nota:

              • El límite de un polinomio. Sea f(x) una función polinomial, entonces:  Lim f(x) = f(a) x->a
              1. Teorema 7: Límite de una función racional.

                Nota:

                • Sea f(x)=p(x)/q(x) un cociente de polinomios, entonces: Lim f(x) = p(a)/q(a) x->asi q(a) no es cero
                1. Teorema 8: Límite de una función que contiene un radical.

                  Nota:

                  • Si a>0 y n es cualquier entero positivo, o si a<0 y n es un entero positivo impar, entonces: Lim x^(1/n) = a^(1/n) x->a 
                  1. Teorema 9: El límite de una función compuesta.

                    Nota:

                    • Si f y g son funciones tales que: Lim g(x) = L   y   Lim f(x) = f(L) x->a                    x->L entonces: Lim f [g(x)] = f(L) x->a
                    1. Determinación de continuidad de una función
                      1. 1.- Que el punto x = a tenga imagen.

                        Nota:

                        • Debemos verificar que la función esté definida en el punto . En otras palabras, que  pertenezca al dominio de f(x).
                        1. 2.- Que exista el límite de la función en el punto x = a.

                          Nota:

                          • El límite en el punto  existe si tiene límites por la derecha y por la izquierda y estos valores son iguales.
                          1. 3 Que la imagen del punto x=a coincida con el límite de la función en el punto.

                            Nota:

                            • Es necesario que el valor de la imagen sea igual que el valor del límite.
                          Mostrar resumen completo Ocultar resumen completo

                          Similar

                          Tabla Periódica de los Elementos
                          maya velasquez
                          Test Asociado al Reading "Social Network"
                          Diego Santos
                          Test de Auxiliar de Enfermeria para repaso
                          leyvamiri
                          Fichas Verbos inglés - español (131)
                          JOWANI BELLO MELO
                          Fin de Curso: Preguntas para nuestros alumnos
                          Diego Santos
                          ¿Sabes más que un niño de 6º de primaria? (11-12 años)
                          Diego Santos
                          Diagrama QCLD
                          Andrea Castro Romero
                          Anatomía del Corazón
                          65951
                          GRAMÁTICA. Clases de PALABRAS ...
                          Ulises Yo
                          Pagos con tarjetas de crédito
                          Diego Santos
                          Mapa Conceptual Ecosistemas
                          Valentina Pulido