null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
35365
Crypto U3, Theoretical vs. Practical Security
Descripción
(Unit 3 - Further basics of Crypto Design) IYM002 Mapa Mental sobre Crypto U3, Theoretical vs. Practical Security, creado por jjanesko el 31/03/2013.
Sin etiquetas
iym002
unit 3 - further basics of crypto design
iym002
unit 3 - further basics of crypto design
Mapa Mental por
jjanesko
, actualizado hace más de 1 año
Más
Menos
Creado por
jjanesko
hace más de 11 años
118
12
0
Resumen del Recurso
Crypto U3, Theoretical vs. Practical Security
perfect secrecy
Attacker gets no info about the plaintext by observing the ciphertext, other than what was was known before the ciphertext was cobserved.
Gordon's "flash math" version of perfect secrecy
Nota:
[Image: https://lh5.googleusercontent.com/-bm3mNTn_vpY/UVf2zUjHt8I/AAAAAAAAAbM/2PH9xvxP4QQ/s582/flashymathdefinitionofperfectsecrecy.png]
in theory, there exists unbreakable cryptosystems
perfectly secret
one time pad
each letter of a plaintext is transformed with a randomly generated key that is the same length as the plaintext
practical problems
key establishment expensive (creating random sequences)
key distribution a challenge (key changes each time)
key length potentially very large
OTP
practical security
COVERAGE what is the covertimeneeded for the plaintext?
design system to protect against known attacks that would result in plaintext compromise in shorter than covertime
computational complexity
algorithm complexity
for each possible input to the algorithm, the amount of time it takes to run
length of input measured in bits
mathematical complexity - algorithms can be run in
polynomial time
a algorithm that can usually be run in real time with any sized input
"time taken to execute process for an input of size n is not greater than n^r for some number r"
example: multiplication, addition
expontential time
an algorithm that cannot be run in "real" time with most inputs
"if the time taken to execute the process for an input of size n is approximately a^n for some number a"
example: factorization
Just because an algorithm is exponentially hard, it does not mean that it is impossible to solve for all values.
computing exhaustive key search time
need
algorithm complexity
computer speed
example
general algorithm complexity forkey search is 2^n
our example key length is 30, so the complexity for this example is n^30
our example computer does 1,000,000 operations per second
So, 2^30 / 10^6 = roughly 1000 seconds
EVOLUTION when designing algorithms, take into consideration current and emerging state of processing power in computers
when designing cryptosystems, make sure that the implementation does not undermine the power of the algorithms used
practice good key management
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
Crypto U4, Block Cipher, Cipher Feedback Mode (CFB)
jjanesko
Crypto U4, Block Cipher, Cipher Block Chaining Mode (CBC)
jjanesko
Crypto U1, Basic Principles
jjanesko
Crypto U4, Stream Cipher
jjanesko
Crypto U4, Block Cipher, Counter Mode
jjanesko
Crypto U4, Block Cipher, Electronic Codebook Mode (ECB)
jjanesko
Crypto U2, Crypto design principles
jjanesko
Crypto U10 (part 2), Key Management and Lifecycle
jjanesko
Crypto U9, Cryptographic Protocols
jjanesko
Crypto U10 (part 1), Key Management & Lifecycle
jjanesko
Crypto U8, example dynamic password scheme
jjanesko
Explorar la Librería