unidad 3 flexion y torsion _Jesus-M-aza

Descripción

Mapa Mental sobre unidad 3 flexion y torsion _Jesus-M-aza, creado por Jesus Aza el 21/05/2022.
Jesus Aza
Mapa Mental por Jesus Aza, actualizado hace más de 1 año
Jesus Aza
Creado por Jesus Aza hace alrededor de 2 años
31
0

Resumen del Recurso

unidad 3 flexion y torsion _Jesus-M-aza
  1. torsion
    1. Torsión3En la pieza del motor a propulsión que se muestra en la fotografía, el eje central conecta los componentes del motor para desarrollar el empuje.
      1. EJES CIRCULARES EN TORSIÓN
        1. ejeConsidere un eje AB sometido en A y en B a pares de torsión T y T′ iguales y opues-tos. Se pasa una sección perpendicular al eje de la flecha a través de algún punto El diagrama de cuerpo libre de la porción BC
        2. Deformaciones en un eje circular
          1. Considere un eje circular unido a un soporte fijo en uno de sus extremos.
          2. Esfuerzos en el rango elástico
            1. Cuando el par de torsión T es tal que todos los esfuerzos cortantes en el eje se encuen-tran por debajo de la resistencia a la cedencia τY, los esfuerzos en el eje permanecerán por debajo del límite de proporcionalidad y también por debajo del límite elástico. Por lo tanto, se aplicará la ley de Hooke y no habrá deformación permanente
            2. Aplicación de conceptos
              1. Un eje cilíndrico hueco de acero mide 1.5 m de longitud y tiene diámetros interior y exterior iguales a 40 y 60 mm, respectivamente (figura 3.15).
              2. ÁNGULO DE GIRO EN EL RANGO ELÁSTICO
                1. En esta sección se deducirá una relación entre el ángulo de giro ϕ de un eje circular y el par de torsión T ejercido sobre el eje. γmáx=cϕL
                2. Aplicación de conceptos
                  1. torsión deberá aplicarse al extremo del eje de la aplicación de concep-tos 3.1 para producir un giro de 2°? Utilice el valor G = 77 GPa para el módulo de rigidez del acero.
                  2. ejeConsidere un eje AB sometido en A y en B a pares de torsión T y T′ iguales y opues-tos. Se pasa una sección perpendicular al eje de la flecha a través de algún punto arbitrario C
                    1. esfuerzo en un eje
                  3. Flexión pura
                    1. los esfuerzos normales y la curvatura que resulta de la flexión pura, como la desarrollada en la parte central de la barra que se muestra en la fotografía
                      1. Momento interno y relaciones de esfuerzo
                        1. Considere un elemento prismático AB con un plano de simetría y sometido a pares iguales y opuestos M y M′ que actúan en dicho plano
                        2. Deformaciones
                          1. Ahora se probará que cualquier sección transversal perpendicular al eje del elemento permanece plana, y que el plano de la sección pasa por C. Si no fuera así, podría encontrarse un punto E del corte original en D (figura 4.8a), el cual después de flexionar el elemento, no estaría en el plano perpendicular al plano de simetría que contiene la línea CD (figura 4.8b). Sin embargo, debido a la simetría del elemento, habrá otro punto E′ que se transformará exactamente de la misma manera.
                            1. se estudian las deformaciones de un elemento sometidos a pares iguales y opuestos m y m
                            2. ESFUERZOS Y DEFORMACIONES EN EL RANGO ELÁSTICO
                              1. A continuación, se estudiará el caso en el que el momento flector M es tal que los esfuerzos normales en el elemento permanecen por debajo de la resistencia a la cedencia σY. Esto implica que, para propósitos prácticos, los esfuerzos en el elemento permanecerán por debajo del límite elástico. No habrá deformaciones permanentes y podrá aplicarse la ley de Hooke para el esfuerzo uniaxial.
                              2. DEFORMACIONES EN UNA SECCIÓN TRANSVERSAL
                                1. e consideró que la sección transversal de un elemento sometido a flexión pura permanece plana, existe la posibilidad de que se presenten deformaciones dentro del plano de la sección.
                                2. puraMomento centroidal de inercia
                                  1. Se utiliza el teorema de los ejes paralelos para determinar el momento de inercia de cada rectángulo
                                  2. Esfuerzos residuales.
                                    1. Se superponen los esfuerzos debidos a la carga y a la descarga y se obtienen los esfuerzos residuales en la viga
                                    2. es muy importante se utiliza en el diseño de muchos componentes estructurales como vigas y maquinas

                                    Recursos multimedia adjuntos

                                    Mostrar resumen completo Ocultar resumen completo

                                    Similar

                                    Martin Luther King, Jr.
                                    maya velasquez
                                    Láminas de Histología
                                    Mario Ripalda
                                    Grupos funcionales (Bioquímica)
                                    Nadim Bissar
                                    Cómo Aprender Idiomas Usando Fichas
                                    Diego Santos
                                    Bioelementos Mapa Mental
                                    Joseline Loza Gil
                                    Músculos del hombro
                                    Nadim Bissar
                                    Relación del Derecho Mercantil con otras ramas del Derecho
                                    Juan Jose Avila Espinoza
                                    CÓDIGO FISCAL DE LA FEDERACIÓN
                                    ERNESTO CABALLERO LANDEROS
                                    IBM Integration Bus V10 Application Development
                                    Jhon Diaz
                                    DERECHO PROCESAL CIVIL
                                    Alfonso Tester
                                    DIPTONGO O HIATO
                                    Silvia Rial Martínez