Quantum Mechanics II

Descripción

Mapa Mental sobre Quantum Mechanics II, creado por franz.sciortino el 02/04/2014.
franz.sciortino
Mapa Mental por franz.sciortino, actualizado hace más de 1 año
franz.sciortino
Creado por franz.sciortino hace más de 10 años
56
2

Resumen del Recurso

Quantum Mechanics II
  1. Ladder operators (not Hermitian) are "empirically" found to raise/lower energy states
    1. Very useful: [H, a]= - h_bar *w*a and [H, a']=h_bar*w*a'
      1. Use condition a*u_0=0 to find momentum eigenstates and multiply by a' to find energy eigenstates
        1. Some results are representation-independent
        2. Time-independent Perturbation Theory
          1. find variation in eigenvalues by setting (u_n)'= u_n
            1. Find eigenstates by letting (E_n)'=E_n and ignoring 2nd order terms
            2. Degeneracy
              1. Generally produced by symmetries
                1. Individual states might not exhibit symmetry, but sums of prob. densities must always do
                2. Superpositions of eigenstates are still eigenstates
                  1. Schmidt orthogonalization: procedure to make degenerate states orthogonal (always possible)
                    1. With degeneracy, if two operators commute, then there always exists a combination of them which is compatible
                    2. Orbital angular momentum
                      1. L_i components are given by (r x p)
                        1. In cyclic order, [Lx, Ly]= i h_bar *Lz
                          1. L^2 commutes with L_i components, but these do not commute between themselves
                            1. We can write eigenvalue equations: L^2 Y = alpha Y and L_z Y = beta Y
                            2. Define ladder operators L+ and L- to show many ang.momentum rotations for each length
                              1. Use conditions of ladder operators to find eigenvalues: alpha=l(l+1) h_bar and beta= m_l h_bar
                                1. Find ang. momentum eigenstates using L_z and L^2 spherical components --> Legendre equations --> spherical harmonics
                              2. Central potentials give [H, L^2]=0 (conservation of ang.mom.)
                                1. Obtain radial equation from TISE with central potential barrier and separation of variables
                                  1. Measuring ang.mom. experiments: Zeeman, Stern-Gerlach, Uhlenbeck-Goudsmit spin proposition
                                  2. Spin angular momentum
                                    1. Analogies with orbital ang.mom. postulated, but only 2 states allowed
                                      1. Knowing needed eigenvalues, deduce eigenstates (matrices)
                                        1. Pauli matrices, up/down spin states
                                          1. Find shifts in energies in uniform magnetic fields by mu_B *B
                                            1. Larmor precession of S_x and S_y, with constant S_z over time
                                    Mostrar resumen completo Ocultar resumen completo

                                    Similar

                                    EBEP
                                    Andres C.
                                    Freud: Esquema del Psicoánalisis
                                    Cesar_Adolfo
                                    Primera Guerra Mundial
                                    juanmadj
                                    Cómo Calcular la Nota de Admisión en la Selectividad
                                    maya velasquez
                                    FISICA ELECTRÓNICA
                                    Diego Santos
                                    Cómo Usar la Plantilla del Plan de Estudio de 5 Minutos
                                    Diego Santos
                                    PINTURAS FAMOSAS: Título y Autor...
                                    Ulises Yo
                                    Transcripcion del ADN
                                    Paula Correa
                                    PRUEBA de MATEMÁTICAS - 6º NIVEL de PRIMARIA...
                                    Ulises Yo
                                    Cuestionario Básico sobre GoConqr
                                    Diego Santos