Rechenoperationen mit Vektoren

Descripción

Mapa Mental sobre Rechenoperationen mit Vektoren, creado por Maximilian Schönherr el 07/12/2016.
Maximilian Schönherr
Mapa Mental por Maximilian Schönherr, actualizado hace más de 1 año
Maximilian Schönherr
Creado por Maximilian Schönherr hace casi 8 años
36
0

Resumen del Recurso

Rechenoperationen mit Vektoren
  1. Vektoren addieren subtrahieren : Oberer Term +/- oberer Term :unterer Term +/- unterer Term
    1. Wie Multipliziert man ein skalar Produkt mit einem Vektor ? Oberer Term mal Skalar Produkt + unterer Term mal Skalar Produkt.
      1. Zwei Vektoren u und v heißen orthogonal zu einander, wenn ihr Skalarprodukt u · v = 0 bzw. uT · v = 0 Null ist.
        1. In der Geometrie ist ein Normalenvektor, auch Normalvektor, ein Vektor, der orthogonal (d. h. rechtwinklig, senkrecht) auf einer Geraden, Kurve, Ebene, (gekrümmten) Fläche oder einer höherdimensionalen Verallgemeinerung eines solchen Objekts steht.
          1. Den Normalenvektor kann man auf verschiedenen Wegen berechnen, entweder über ein Gleichungssystem oder über das Kreuzprodukt, das auch Vektorprodukt genannt wird.
      2. Wie bestimmt man einen Gegenvektor ? Den Kehrwert Eines Vektoren bilden und ein Vorzeichen des neuen Vektors verändern.Er ist das Gegenteil des ursprünglichen Vektors.
        1. Ein Einheitsvektor ist in der analytischen Geometrie ein Vektor der Länge Eins.ein Vektor mit der Länge 5 sich aus 5 Einheitsvektoren zusammen setzen lässt. Ein Vektor mit der Länge 6 lässt sich aus 6 Einheitsvektoren zusammen setzen, usw.Einen normierten Vektor kannst du leicht durch skalare Multiplikation auf eine gewünschte Länge bringen. Er hat ja die Länge 1.
          1. Das Skalarprodukt zweier Vektoren ist die Multiplikation der Projektion des Vektors auf den Vektor mit dem Betrag von
            1. Wie berechne ich den mittelpunkt einer Strecke ?:m= 0.5 (a+b)
              1. Schwerpunkt einer strecke: Vektor s=1/3 (verktor a + vektor b + vektor c)
                1. Das Multiplizieren eines Vektor mit einer Zahl t nennt man Skalarmultiplikation.
                  1. Ein Skalar ist eine mathematische Größe, die allein durch die Angabe eines Zahlenwertes charakterisiert ist
                    1. Das Skalarprodukt ist eine Verknüpfung von zwei Vektoren die eine Zahl ergibt.
                    2. Winkel zweier Vektoren berechen : cos y=(vektor a * vektor b )/ (|vektor a| * |vektor b|)
                      Mostrar resumen completo Ocultar resumen completo

                      Similar

                      Matemáticasen la VidaCotidiana
                      Diego Santos
                      Cualidades de la Voz y Variedad Vocal "Expresión Oral"
                      jairosernabernal
                      Sistema Internacional de Unidades (SI)
                      Raúl Fox
                      CIUDADES I...
                      JL Cadenas
                      MODAL VERBS
                      Florencia Soledad
                      Geografía: España y Europa
                      Diego Santos
                      PRESENT SIMPLE 2 MULTIPLE CHOICE
                      Silvia Francisco Llorente
                      Mapa mental “Caracterizar los procesos pedagógicos en Ambientes Virtuales de Aprendizaje”.
                      CHRISTIAN DAVID BARRIOS CARRERA
                      Tipos de Investigación Científica
                      Karen Dubón
                      ISLAM
                      Joan Sempere
                      Flujo grama de distribución de egresos.
                      danny guacas