Study on IoT systems design

Descripción

Complex knowlage used to design and develope an analytical system for streams analysis
Tomasz Cieplak
Mapa Mental por Tomasz Cieplak, actualizado hace más de 1 año
Tomasz Cieplak
Creado por Tomasz Cieplak hace casi 8 años
150
1

Resumen del Recurso

Study on IoT systems design

Nota:

  • Get prerequiments for the system design. 
  • Kurs: A developer's guide to Exploring and Visualizing IoT Datahttps://www.coursera.org/learn/exploring-visualizing-iot-data
  • Artykuł: IoT 101 – Everything You Need to Know to Start Your IoT Project http://www.datasciencecentral.com/profiles/blogs/iot-101-everything-you-need-to-know-to-start-your-iot-project
  • Koniecznie!!! https://github.com/onurakpolat/awesome-bigdata#data-visualization
  • IoT architecture on the edge http://www.iotcentral.io/blog/the-iot-architecture-at-the-edge?context=category-Platforms
  • Artykuły do projektu związanego z IoT http://www.datasciencecentral.com/profiles/blogs/16-great-iot-articles-published-in-2016
  1. Types of data analysis
    1. Real Time Analysis
      1. Stream Processing
        1. Apache Storm
          1. Apache Spark Streams

            Nota:

            • Mastering Apache Spark 2 https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/
            1. Apache Samza
              1. MOA Framework

                Nota:

                • http://moa.cms.waikato.ac.nz/
            2. Batch Analysis
              1. Apache Hadoop
            3. Database Systems
              1. DBMS

                Nota:

                • Database management system
                1. Apache HBase
                  1. Apache CouchDB

                    Nota:

                    • http://db-engines.com/en/system/Cloudant%3BCouchDB%3BCouchbase
                    1. IBM Cloudant NoSql
                      1. Couchbase
                    2. TSDB

                      Nota:

                      • (Time Series DataBases)
                      1. OpenTSDB

                        Nota:

                        • Data store using HBase
                        • Brain Monitoring with Kafka, OpenTSDB, and Grafana http://www.kdnuggets.com/2016/08/brain-monitoring-kafka-opentsb-grafana.html/2
                    3. File Systems
                      1. HDFS

                        Nota:

                        • Hadoop File System
                      2. Messaging Queue Systems
                        1. Apache Kafka

                          Nota:

                          • Kafka for beginners https://www.cloudkarafka.com/blog/2016-11-30-part1-kafka-for-beginners-what-is-apache-kafka.html
                          • Znaczenia Kafka dla IoT https://thenewstack.io/apache-kafka-cornerstone-iot-data-platform/
                        2. Programming Languages
                          1. R Lang
                            1. R Open

                              Nota:

                              • Data visualisation with Shiny https://www.ibm.com/developerworks/community/files/basic/anonymous/api/library/1b6a2624-dc86-4856-b4ed-cdda6bfdecda/document/d26301ed-3155-4e21-ba3d-4936e0bd45cb/media
                              1. MS R Server

                                Nota:

                                • Płatny
                                1. Data Science with R

                                  Nota:

                                  • Dyplr tricks https://www.r-bloggers.com/lesser-known-dplyr-tricks/
                                  1. Data Import
                                    1. Amelia - uzupełnianie danych TS
                                      1. tidyr - porządkowanie danych
                                        1. readr - ułatwia import danych
                                          1. tibble - tab. struktura danych
                                      2. Python
                                        1. Interactive Parallel Computing in Python

                                          Nota:

                                          • Interactive Parallel Computing in Python https://ipyparallel.readthedocs.io/ https://github.com/ipython/ipyparallel
                                          1. Clustering Alghoritms

                                            Nota:

                                            • http://www.kdnuggets.com/2017/03/k-means-clustering-algorithms-intro-python.html?utm_content=buffer4b146&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer
                                            1. Biblioteki - Python
                                              1. EIT
                                                1. pyEIT

                                                  Nota:

                                                  • https://github.com/liubenyuan/pyEIT
                                                  1. Calls Diagram

                                                    Nota:

                                                    • C:\Anaconda3\Scripts>python pycallgraph graphviz -o main.png -- D:\tomas\Python\pyEIT\demo\demo_dynamic_greit.py
                                                    • http://pycallgraph.slowchop.com/en/master/guide/intro.html
                                                    • Get readoff of Windows error - http://delimitry.blogspot.com/2015/03/solving-problems-with-pycallgraph-under.html
                                                  2. Rpi.EIT

                                                    Nota:

                                                    • https://github.com/agungdwiprasetyo/RPi.EIT-algorithms
                                                  3. Siatki - Mesh
                                                    1. MeshPy

                                                      Nota:

                                                      • Site https://mathema.tician.de/software/meshpy/
                                                      1. Python Triangle

                                                        Nota:

                                                        • Implementacja w Python biblioteki Trianle http://dzhelil.info/triangle/#
                                                        • Biblioteka Triangle: http://www.cs.cmu.edu/~quake/triangle.html
                                                        1. PyDistMesh

                                                          Nota:

                                                          • https://pypi.python.org/pypi/PyDistMesh
                                                        2. Zagad. proste i odwrotne
                                                          1. pyGimli

                                                            Nota:

                                                            • http://www.pygimli.org/index.html
                                                            • Anaconda install: https://anaconda.org/gimli/pygimli
                                                            1. Operator Discretization Library

                                                              Nota:

                                                              • https://odlgroup.github.io/odl/getting_started/about_odl.html
                                                              1. Algorithmic Differentiation in Python

                                                                Nota:

                                                                • http://pythonhosted.org/algopy/
                                                                1. Linear Inverse Problem
                                                                  1. linvpy

                                                                    Nota:

                                                                    • https://github.com/LCAV/linvpy
                                                                    1. pinvprob

                                                                      Nota:

                                                                      • https://github.com/HajimeKawahara/pinvprob
                                                                      1. hIPPYlib

                                                                        Nota:

                                                                        • https://hippylib.github.io/tutorials/2_PoissonDeterministic/
                                                                    2. Math Lib.
                                                                      1. Numpy

                                                                        Nota:

                                                                        • Kurs Numpy http://www.python-course.eu/numpy.php
                                                                        1. SciPy

                                                                          Nota:

                                                                          • Wykaz oprogramowania naukowego https://www.scipy.org/topical-software.html
                                                                          • SciPy dokumentacja https://www.scipy.org/scipylib/index.html
                                                                          1. Voronoi Diagrams

                                                                            Nota:

                                                                            • http://zderadicka.eu/voronoi-diagrams/
                                                                            • http://www-astro.physics.ox.ac.uk/~mxc/software/
                                                                            • http://dzhelil.info/triangle/examples.html
                                                                        2. ERT
                                                                          1. BERT

                                                                            Nota:

                                                                            • Repo https://gitlab.com/resistivity-net/bert/tree/master
                                                                            1. E4D

                                                                              Nota:

                                                                              • https://e4d.pnnl.gov/Documents/E4D_User_Guide.pdf
                                                                            2. MISC
                                                                              1. TomograPy

                                                                                Nota:

                                                                                • Strona projektu http://nbarbey.github.io/TomograPy/
                                                                                • Artykuł: https://arxiv.org/pdf/1103.5904.pdf
                                                                                1. Medical Data Manipulation

                                                                                  Nota:

                                                                                  • https://idoimaging.com/programs?q%5Bdisplay_function%5D=&q%5Bfor_audience%5D=&q%5Bfunction%5D=&q%5Bheader_function%5D=&q%5Binterface%5D=&q%5Blanguage%5D=19&q%5Bname_cont%5D=&q%5Bnetwork_function%5D=&q%5Bother_function%5D=&q%5Bplatform%5D=&q%5Bprogramming_function%5D=&q%5Bread_format%5D=&q%5Bspeciality%5D=&q%5Bsummary_cont%5D=&q%5Bwrite_format%5D=
                                                                                2. Data Flow
                                                                                  1. Apache AirFlow

                                                                                    Nota:

                                                                                    • Tylko Linux http://airflow.incubator.apache.org/start.html
                                                                                  2. Visualization
                                                                                    1. VTK

                                                                                      Nota:

                                                                                      • http://www.vtk.org/Wiki/VTK/Examples/Python
                                                                                      1. Matplotlib
                                                                                    2. Intel Python

                                                                                      Nota:

                                                                                      • Installation: https://software.intel.com/en-us/articles/using-intel-distribution-for-python-with-anaconda
                                                                                      1. Python (x,y)

                                                                                        Nota:

                                                                                        • https://python-xy.github.io/
                                                                                      2. Scala

                                                                                        Nota:

                                                                                        • Development and deployment of Spark applications with Scala, Eclipse, and sbt – Part 1: Installation & configuration http://www.nodalpoint.com/development-and-deployment-of-spark-applications-with-scala-eclipse-and-sbt-part-1-installation-configuration/
                                                                                        • Visualizing Big Data with Spark and Scala http://blog.ibmjstart.net/2016/07/18/visualizing-big-data-spark-scala/
                                                                                        1. SBT
                                                                                          1. Scala IDE

                                                                                            Nota:

                                                                                            • http://scala-ide.org/download/sdk.html
                                                                                          2. Java
                                                                                            1. Flow Base Programming

                                                                                              Nota:

                                                                                              • Used in IBM Streams, Apache NiFi
                                                                                              • http://www.jpaulmorrison.com/fbp/
                                                                                              • Apache Beam (Pyton SDK - https://github.com/apache/beam/tree/master/sdks/python#install-virtualenv) Google Cloud DataFlow - środowisko uruchomieniowe dla Apache Beamhttps://cloud.google.com/dataflow/  
                                                                                              • Opis modelu programistycznego https://beam.apache.org/documentation/programming-guide/   
                                                                                              1. Programmer IDE
                                                                                                1. Eclipse
                                                                                                  1. Maven
                                                                                                  2. Zeppelin Notebook

                                                                                                    Nota:

                                                                                                    •  Zbiór przykładów analizy danych do Zeppelina https://github.com/hortonworks-gallery/zeppelin-notebooks   
                                                                                                    1. Jupiter Notebook

                                                                                                      Nota:

                                                                                                      • Data export to HTML https://blog.dominodatalab.com/lesser-known-ways-of-using-notebooks/
                                                                                                      • Visualisation PixieDust: Magic for Your Python Notebook https://developer.ibm.com/clouddataservices/2016/10/11/pixiedust-magic-for-python-notebook/
                                                                                                      • http://notebooks.azure.com
                                                                                                      • https://nbviewer.jupyter.org/
                                                                                                      1. R Studio
                                                                                                        1. Anaconda
                                                                                                          1. VisualStudio PTVS

                                                                                                            Nota:

                                                                                                            • https://github.com/Microsoft/PTVS/
                                                                                                        2. Implementation
                                                                                                          1. VM

                                                                                                            Nota:

                                                                                                            • Virtualization
                                                                                                            1. Hyper-V
                                                                                                              1. Docker

                                                                                                                Nota:

                                                                                                                • Wdrożenie Zeppelin https://github.com/dylanmei/docker-zeppelin
                                                                                                                • Wdrożenie Apache Spark https://github.com/gettyimages/docker-spark
                                                                                                                1. VMware
                                                                                                                  1. VirtualBox
                                                                                                                  2. Cloud Computing
                                                                                                                    1. Azure HDInsight
                                                                                                                      1. IBM Bluemix IoT

                                                                                                                        Nota:

                                                                                                                        • Koniecznie!!! Spark Streaming + Watson IoT Platform Integration https://developer.ibm.com/recipes/tutorials/spark-streaming-ibm-watson-iot-platform-integration/
                                                                                                                        • Koniecznie: Engage Machine Learning for detecting anomalous behaviors of things https://developer.ibm.com/recipes/tutorials/engage-machine-learning-for-detecting-anomalous-behaviors-of-things/
                                                                                                                        • Koniecznie: Timeseries Data Analysis of IoT events by using Jupyter Notebook  https://developer.ibm.com/recipes/tutorials/timeseries-data-analysis-of-iot-events-by-using-jupyter-notebook/
                                                                                                                        • Koniecznie!!! Integrating Watson IoT Platform with Message Hub and Apache Spark  https://developer.ibm.com/recipes/tutorials/integrating-watson-iot-platform-with-message-hubkafka/
                                                                                                                        • Koniecznie!!! Integracja DB i Spark https://developer.ibm.com/clouddataservices/docs/ibm-data-science-experience/docs/
                                                                                                                        • Cleanse and visualize location data using Spark and Bluemix https://www.ibm.com/developerworks/library/ba-1610location-data-spark-bluemix-trs/index.html
                                                                                                                        • Apache Spark - using notebooks https://console.ng.bluemix.net/docs/services/AnalyticsforApacheSpark/index-gentopic3.html#genTopProcId4
                                                                                                                        • !!! SparkR notebook with Cloudant https://github.com/charles2588/bluemixsparknotebooks/blob/master/R/SparkR_Cloudant_Connection.ipynb
                                                                                                                        1. AWS
                                                                                                                          1. Databricks
                                                                                                                            1. Google Cloud Platform

                                                                                                                              Nota:

                                                                                                                              • Real-Time Stream Processing for IoT: https://cloud.google.com/solutions/architecture/real-time-stream-processing-iot
                                                                                                                              • Cena na 1 Rok GPU in Google: https://cloud.google.com/products/calculator/#id=99152826-9096-43b2-a100-836c36ef4d50
                                                                                                                            2. Bare Metal
                                                                                                                            3. Integrated Platforms
                                                                                                                              1. Hortonworks
                                                                                                                                1. Data Platform
                                                                                                                                  1. Data Flow
                                                                                                                                  2. Cloudera

                                                                                                                                    Nota:

                                                                                                                                    • Cloudera StreamSets https://vimeo.com/147671735
                                                                                                                                    1. IBM Open Platform
                                                                                                                                    2. Data Integration
                                                                                                                                      1. Apache NiFi
                                                                                                                                      2. Messaging Protocols
                                                                                                                                        1. MQTT

                                                                                                                                          Nota:

                                                                                                                                          • !!! iot-device-samples https://github.com/ibm-messaging/iot-device-samples
                                                                                                                                        2. Programming Methods
                                                                                                                                          1. Img. Reconstr. Algorithms
                                                                                                                                            1. Tensor-based

                                                                                                                                              Nota:

                                                                                                                                              • Artykuł: http://iopscience.iop.org/article/10.1088/1361-6501/aa58a3/meta
                                                                                                                                              1. Simulated Annealing Particle Swarm Optimization
                                                                                                                                                1. Landweber iterative method
                                                                                                                                                  1. Linear back projection (LBP)
                                                                                                                                                    1. Singular value decomposition

                                                                                                                                                      Nota:

                                                                                                                                                      • Implementacja Python: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
                                                                                                                                                      1. Conjugate Gradient method
                                                                                                                                                        1. Maximum Likelihood Estimation Method

                                                                                                                                                          Nota:

                                                                                                                                                          • https://github.com/clarehchao/Spark3DImageReconstruction
                                                                                                                                                          1. Inverse problems

                                                                                                                                                            Nota:

                                                                                                                                                            • Introduction to inverse problems (Spring 2014) http://cc.oulu.fi/~smaenpaa/inv_pk/inv_pk14_eng.pdf
                                                                                                                                                            1. Tikhonov regularization method

                                                                                                                                                              Nota:

                                                                                                                                                              • Implementacja Python https://pypi.python.org/pypi/InverseProblem/1.0
                                                                                                                                                              1. Statistical and Computational InverseProblems

                                                                                                                                                                Nota:

                                                                                                                                                                • https://www.researchgate.net/profile/Ian_Langmore/publication/268250507_Statistical_and_Computational_Inverse_Problems_and_a_little_uncertainty_quantification/links/5654822708aeafc2aabbd811/Statistical-and-Computational-Inverse-Problems-and-a-little-uncertainty-quantification.pdf?origin=publication_detail&ev=pub_int_prw_xdl&msrp=iG4X9V_68LOGbkxNrcZEP4Az6qj7tC0tBRcUQyjL8QYqQT4QoLmsF2FgkN6bhYKWGD5hIwTkn5ZA4aHZ8A8286ns9G-BWrYTAsuNSMv5CNk.bYd_LZtB1khHvYwW5OyIFeUTFjZCQqyRJayOmj_N5AXLMsdZGfQieOSGqKg4N2g4hxqe2aS8SGqs7RTj0lO2mw.wfseq3OvlHxPmYqbEhxOxL040D2b4044fCPINZ0nDdsCbRE9GxeAhwoYCzzzOf64AwlcmWuBBIbKFhDQjoECqQ.jNjix2pbRzy-BWR2vabpp4TbUNEHGKEiBIwCb6q11EYbYkRGdAy-ev4pUz1krhlO9uaouT9_yrSr7F-4hJheJQ
                                                                                                                                                                1. Lectures

                                                                                                                                                                  Nota:

                                                                                                                                                                  • Lecture1: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture1 Lecture2: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture2 Lecture3&4: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture3 Lecture5: https://koppa.jyu.fi/en/courses/164831/course-literature/lecture5
                                                                                                                                                              2. Machine Intelligence
                                                                                                                                                                1. Neural Networks
                                                                                                                                                                  1. Machine Learning

                                                                                                                                                                    Nota:

                                                                                                                                                                    • A Visual Introduction to Machine Learning http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
                                                                                                                                                                    1. Apache Spark MLlib
                                                                                                                                                                    2. Deep Learning

                                                                                                                                                                      Nota:

                                                                                                                                                                      • Deeplearning4j on Spark https://deeplearning4j.org/
                                                                                                                                                                      • TensorFlow http://www.tensorflow.org
                                                                                                                                                                      • An Overview of Python Deep Learning Frameworks http://www.kdnuggets.com/2017/02/python-deep-learning-frameworks-overview.html
                                                                                                                                                                      • TensorFlow on Sparkhttps://github.com/yahoo/TensorFlowOnSpark
                                                                                                                                                                      1. Google TensorFlow

                                                                                                                                                                        Nota:

                                                                                                                                                                        • Porównanie TensorFlow i CNTK https://esciencegroup.com/2016/02/08/tensorflow-meets-microsofts-cntk/
                                                                                                                                                                        1. TensorBoard: Visualizing Learning

                                                                                                                                                                          Nota:

                                                                                                                                                                          • (C:\Anaconda3\envs\TensorFlow) C:\Users\tom\Documents>python -m tensorflow.tensorboard --logdir=./ localhost:6006
                                                                                                                                                                        2. Microsoft Cognitive Toolkit (CNTK)

                                                                                                                                                                          Nota:

                                                                                                                                                                          • Strona projektu: https://www.microsoft.com/en-us/research/product/cognitive-toolkit/
                                                                                                                                                                          • Github: https://github.com/Microsoft/CNTK
                                                                                                                                                                          • Wiki: https://github.com/Microsoft/CNTK/wiki
                                                                                                                                                                    3. Approaches to reconstruction acceleration

                                                                                                                                                                      Nota:

                                                                                                                                                                      • Artykuł: Review of Parallel Computing Techniques for Computed Tomography Image Reconstruction http://www.imaging.sbes.vt.edu/BIDLib/CT/NiLiWang_ParaCompTech.pdf
                                                                                                                                                                      • Rozprawa Doktorska dot. CT: http://ir.uiowa.edu/cgi/viewcontent.cgi?article=2330&context=etd
                                                                                                                                                                      1. Parallel Computing
                                                                                                                                                                        1. Distribiuted Computing
                                                                                                                                                                          1. Apache Spark
                                                                                                                                                                            1. SparkR Desc.

                                                                                                                                                                              Nota:

                                                                                                                                                                              • Opis biblioteki SparkR https://spark.apache.org/docs/2.1.0/api/R/index.html
                                                                                                                                                                              1. DataFrame
                                                                                                                                                                                1. Operations

                                                                                                                                                                                  Nota:

                                                                                                                                                                                  • Operacje na obiekcie SparkDataFrame https://www.analyticsvidhya.com/blog/2016/10/spark-dataframe-and-operations/
                                                                                                                                                                            2. Local PC Clusters
                                                                                                                                                                            3. GPU

                                                                                                                                                                              Nota:

                                                                                                                                                                              • Artykuł: P.Kapusta http://annals-csis.org/Volume_8/pliks/344.pdf
                                                                                                                                                                              1. Improved Algorithms
                                                                                                                                                                              2. Data Visualization
                                                                                                                                                                                1. Web App

                                                                                                                                                                                  Nota:

                                                                                                                                                                                  • https://www.slideshare.net/BenLaird/real-time-data-viz-with-spark-streaming-kafka-and-d3js
                                                                                                                                                                                  1. D3.js

                                                                                                                                                                                    Nota:

                                                                                                                                                                                    • https://github.com/d3
                                                                                                                                                                                    1. DC.js

                                                                                                                                                                                      Nota:

                                                                                                                                                                                      • https://dc-js.github.io/dc.js/
                                                                                                                                                                                    2. Socket.io

                                                                                                                                                                                      Nota:

                                                                                                                                                                                      • https://github.com/socketio/socket.io
                                                                                                                                                                                      1. R Shiny

                                                                                                                                                                                        Nota:

                                                                                                                                                                                        • Tutorial: new ver. http://shiny.rstudio.com/tutorial/ old http://rstudio.github.io/shiny/tutorial/
                                                                                                                                                                                        1. Rickshaw TS graphs.

                                                                                                                                                                                          Nota:

                                                                                                                                                                                          • Rickshaw is a JavaScript toolkit for creating interactive time series graphs. http://code.shutterstock.com/rickshaw/
                                                                                                                                                                                          1. RealTime Visualization IBM

                                                                                                                                                                                            Nota:

                                                                                                                                                                                            • https://developer.ibm.com/recipes/tutorials/visualizing-your-data/
                                                                                                                                                                                          2. Bokeh

                                                                                                                                                                                            Nota:

                                                                                                                                                                                            • https://bokeh.pydata.org/en/latest/
                                                                                                                                                                                            1. MPLD3

                                                                                                                                                                                              Nota:

                                                                                                                                                                                              • http://mpld3.github.io/
                                                                                                                                                                                          3. Medical Data Analysis
                                                                                                                                                                                            1. MIRAN Project

                                                                                                                                                                                              Nota:

                                                                                                                                                                                              • Projekt analizy danych medycznych za pomocą Python http://ne-scientific.com/miran/ http://ne-scientific.com/miran/
                                                                                                                                                                                            2. Microservices

                                                                                                                                                                                              Nota:

                                                                                                                                                                                              • https://youtu.be/-zsKY9p_5R8?t=34m2s https://github.com/miguelgrinberg/microflack_admin
                                                                                                                                                                                              • https://youtu.be/nrzLdMWTRMM
                                                                                                                                                                                              • https://12factor.net/
                                                                                                                                                                                              1. Loadbalancer
                                                                                                                                                                                                1. Windows
                                                                                                                                                                                                  1. Nginx

                                                                                                                                                                                                    Nota:

                                                                                                                                                                                                    • https://nginx.org/en/download.html
                                                                                                                                                                                                  2. Linux
                                                                                                                                                                                                    1. HAProxy

                                                                                                                                                                                                      Nota:

                                                                                                                                                                                                      • http://www.haproxy.org/
                                                                                                                                                                                                  3. Design patterns
                                                                                                                                                                                                    1. API Gateway

                                                                                                                                                                                                      Nota:

                                                                                                                                                                                                      • http://microservices.io/patterns/apigateway.html
                                                                                                                                                                                                      1. Service Registry

                                                                                                                                                                                                        Nota:

                                                                                                                                                                                                        • http://microservices.io/patterns/service-registry.html
                                                                                                                                                                                                      2. Service Registry
                                                                                                                                                                                                        1. Consul

                                                                                                                                                                                                          Nota:

                                                                                                                                                                                                          • https://www.consul.io/intro/index.html
                                                                                                                                                                                                          1. etcd

                                                                                                                                                                                                            Nota:

                                                                                                                                                                                                            • https://github.com/coreos/etcd
                                                                                                                                                                                                          2. Containers
                                                                                                                                                                                                            1. Docker
                                                                                                                                                                                                            2. Service-to-Service Communication
                                                                                                                                                                                                              1. Logging
                                                                                                                                                                                                                1. Logspout

                                                                                                                                                                                                                  Nota:

                                                                                                                                                                                                                  • https://github.com/gliderlabs/logspout
                                                                                                                                                                                                              Mostrar resumen completo Ocultar resumen completo

                                                                                                                                                                                                              Similar

                                                                                                                                                                                                              Python Quiz
                                                                                                                                                                                                              karljmurphy
                                                                                                                                                                                                              Think Python
                                                                                                                                                                                                              tsilvo2001
                                                                                                                                                                                                              Basic Python - Print Formatting
                                                                                                                                                                                                              Rebecca Noel
                                                                                                                                                                                                              What is Python?
                                                                                                                                                                                                              Daniel Ingram
                                                                                                                                                                                                              Python
                                                                                                                                                                                                              54671
                                                                                                                                                                                                              Docker
                                                                                                                                                                                                              Dan Fletcher
                                                                                                                                                                                                              Know your Python!
                                                                                                                                                                                                              educ8ict
                                                                                                                                                                                                              Basic Python - Strings
                                                                                                                                                                                                              Rebecca Noel
                                                                                                                                                                                                              OpenSource Programming
                                                                                                                                                                                                              Faheem Ahmed
                                                                                                                                                                                                              Python
                                                                                                                                                                                                              Kirstie Wu
                                                                                                                                                                                                              Basic Python - Lists
                                                                                                                                                                                                              Rebecca Noel