La termodinámica es la rama de la física que describe los estados de equilibrio termodinámico a nivel macroscópico. El Diccionario de la lengua española de la Real Academia Española, por su parte, define a la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.1 Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.2 Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,3 o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.4
Principio cero de la termodinámica
Nota:
Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.
En palabras simples: «Si se pone un objeto con cierta temperatura en contacto con otro a una temperatura distinta, ambos intercambian calor hasta que sus temperaturas se igualan».
Tiene una gran importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez está dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Ejemplo
Nota:
Una persona que se mete en una alberca. Generalmente el agua de la alberca es más fría que la temperatura ambiente de la persona, entonces al tener contacto se cederán temperatura hasta alcanzar el equilibrio térmico.
Primer principio de la termodinámica
Ejemplo
Nota:
En el motor de un automóvil la combustión de gasolina libera energía, una parte de ésta es convertida en trabajo, que se aprecia viendo el motor en movimiento y otra parte es convertida en calor.
Segundo principio de la termodinámica
Nota:
Este principio marca la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, una mancha de tinta dispersada en el agua no puede volver a concentrarse en un pequeño volumen). El sentido de evolución de los procesos reales es único ya que son irreversibles. Este hecho viene caracterizado por el aumento de una magnitud física, S, la entropía del sistema termodinámico, con el llamado principio de aumento de entropía, que es una forma de enunciar el segundo principio de la termodinámica. También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo a otro sin pérdidas. De esta forma, el segundo principio impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta solo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Enunciado de Clausius
Nota:
En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».
Enunciado de Kelvin—Planck
Nota:
Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, con la realización de una cantidad igual de trabajo. Sería correcto decir que "Es imposible construir una máquina que, operando cíclicamente, produzca como único efecto la extracción de calor de un foco y la realización equivalente de trabajo". Varía con el primero, dado que en él, se puede deducir que la máquina transforma todo el trabajo en calor, y, que el resto, para otras funciones... Este enunciado afirma la imposibilidad de construir una máquina que convierta todo el calor en trabajo. Siempre es necesario intercambiar calor con un segundo foco (el foco frío), de forma que parte del calor absorbido se expulsa como calor de desecho al ambiente. Ese calor desechado, no pude reutilizarse para aumentar el calor (inicial) producido por el sistema (en este caso la máquina), es a lo que llamamos entropía.
Otra interpretación
Nota:
Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y esta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.
Tercer principio de la termodinámica
Nota:
Algunas fuentes se refieren incorrectamente al postulado de Nernst como "La tercera de las leyes de la termodinámica". Es importante reconocer que no es una noción exigida por la termodinámica clásica por lo que resulta inapropiado tratarlo de «ley», siendo incluso inconsistente con la mecánica estadística clásica y necesitando el establecimiento previo de la estadística cuántica para ser valorado adecuadamente. La mayor parte de la termodinámica no requiere la utilización de este postulado.11 El postulado de Nernst, llamado así por ser propuesto por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto.
Es importante remarcar que los principios de la termodinámica son válidos siempre para los sistemas macroscópicos, pero inaplicables a nivel microscópico. La idea del demonio de Maxwell ayuda a comprender los límites de la segunda ley de la termodinámica jugando con las propiedades microscópicas de las partículas que componen un gas.
Ejemplo
Nota:
Cuando congelas un alimento, por más frío que este, sus átomos siempre estarán en movimiento. O vamos casos más grandes, en industrias, por más congelados que estén sus productos, nunca llegarán al cero absoluto, y sus átomos no se moverán.
Sistema
Nota:
Se puede definir un sistema como un conjunto de materia, que está limitado por unas paredes, reales o imaginarias, impuestas por el observador. Si en el sistema no entra ni sale materia, se dice que se trata de un sistema cerrado, o sistema aislado si no hay intercambio de materia y energía, dependiendo del caso. En la naturaleza, encontrar un sistema estrictamente aislado es, por lo que sabemos, imposible, pero podemos hacer aproximaciones. Un sistema del que sale y/o entra materia, recibe el nombre de abierto
Un sistema abierto
Nota:
se da cuando existe un intercambio de masa y de energía con los alrededores; es por ejemplo, un coche. Le echamos combustible y él desprende diferentes gases y calor.
Un sistema cerrado
Nota:
se da cuando no existe un intercambio de masa con el medio circundante, solo se puede dar un intercambio de energía; un reloj de cuerda, no introducimos ni sacamos materia de él. Solo precisa un aporte de energía que emplea para medir el tiempo.
Un sistema aislado
Nota:
se da cuando no existe el intercambio ni de masa y energía con los alrededores; ¿Cómo encontrarlo si no podemos interactuar con él? Sin embargo un termo lleno de comida caliente es una aproximación, ya que el envase no permite el intercambio de materia e intenta impedir que la energía (calor) salga de él. El universo es un sistema aislado, ya que la variación de energía es cero {\displaystyle \Delta E=0.}