Matrices

Descripción

A-Levels Further Mathematics Mapa Mental sobre Matrices, creado por Alex Burden el 10/04/2017.
Alex Burden
Mapa Mental por Alex Burden, actualizado hace más de 1 año
Alex Burden
Creado por Alex Burden hace casi 8 años
965
4

Resumen del Recurso

Matrices
  1. m x n is the size of the matrix with m rows and n columns

    Nota:

    • m=n ⇒ square matrix
    1. Nota:

      • 2x2 matrix
      1. Nota:

        • 2x3 matrix
        1. Nota:

          • 3x3 matrix
        2. Addition and Subtraction
          1. Nota:

            • Matrices can only be added/subtracted if they are the same size
          2. Multiplication
            1. Nota:

              • 2x3 and 4x5 matrices cannot be multiplied Multiplying a 2x3 and 3x5 matrix together gives a 2x5 matrix AB ≠ BA The order of multiplication is very important ABC=(AB)C=A(BC)
            2. Identity Matrix
              1. The square matrix: AI=IA=A

                Nota:

                • Acts like the number 1 in normal arithmatic
                1. Null Matrix
                  1. The square matrix such that all terms are 0
                    1. AB=0 does not imply that A=0 or B=0
                  2. Diagonal Matrix
                    1. A square matrix where all non-leading diagonal terms are 0
                      1. Determinants
                        1. This is required to find the Inverse of a matrix

                          Nota:

                          • A Matrix is singular when the determinant is 0 Is determined by |A| or det|A|
                            1. |A|=ad-bc
                              1. |A|=a(ei-fh)-b(di-fg)+c(dh-eg)
                          1. Cofactors
                            1. Used to find the Determinant and Adjucate Matrix. Each term is either positive or negative depending on its position
                              1. Inverse Matrices
                                1. Transpose
                                  1. Matrix with all rows and columns interchanged

                                    Nota:

                                    • The leading diagonal is unchanged!
                                    1. Adjucate
                                      1. The adjucate matrix of A is the transpose matrix of the cofactors of A.

                                        Nota:

                                        • This is needed to find the inverse
                                        1. Inverse
                                          1. A is a non-singular matrix, then the inverse is defined; A^-1A=I=AA^-1

                                            Nota:

                                            • If the determinant is 0, then there is no inverse!
                                            1. Inverse and Multiplying
                                              1. AB=C ⇒ B=A(^-1)C

                                                Nota:

                                                • When multipying, the order is important! A(^-1)AB=B but ABA(^-1)≠B
                                              2. Solution of Linear Equations
                                                1. To solve a system of linear equations; Express in the form AB=C where B= Find the inverse matrix A^-1. Solution given by B= =A(^-1)C

                                                  Nota:

                                                  • This method can only be used if |A|≠0
                                                  1. A= B= C=
                                                    1. AB=C ⬄ x = ⇒
                                                      1. BUT B=A(^-1)C ⇒ = A^-1

                                              Recursos multimedia adjuntos

                                              Mostrar resumen completo Ocultar resumen completo

                                              Similar

                                              Fractions and percentages
                                              Bob Read
                                              GCSE Maths Symbols, Equations & Formulae
                                              Andrea Leyden
                                              FREQUENCY TABLES: MODE, MEDIAN AND MEAN
                                              Elliot O'Leary
                                              HISTOGRAMS
                                              Elliot O'Leary
                                              CUMULATIVE FREQUENCY DIAGRAMS
                                              Elliot O'Leary
                                              GCSE Maths: Geometry & Measures
                                              Andrea Leyden
                                              GCSE Maths: Understanding Pythagoras' Theorem
                                              Micheal Heffernan
                                              Using GoConqr to study Maths
                                              Sarah Egan
                                              New GCSE Maths
                                              Sarah Egan
                                              Maths GCSE - What to revise!
                                              livvy_hurrell
                                              GCSE Maths Symbols, Equations & Formulae
                                              livvy_hurrell