PHYS2041 Quantum Mechanics

Descripción

Queensland Certificate of Education Physics Mapa Mental sobre PHYS2041 Quantum Mechanics, creado por Lucy Lowe el 24/07/2017.
Lucy Lowe
Mapa Mental por Lucy Lowe, actualizado hace más de 1 año
Lucy Lowe
Creado por Lucy Lowe hace más de 7 años
81
0

Resumen del Recurso

PHYS2041 Quantum Mechanics
  1. Wave-particle duality

    Nota:

    • every object has wave-like and particle-like properties (microscopic objects 'are’ particles and waves at the same time)
    1. De Broglie wavelength

      Nota:

      • De Broglie wavelength \[ \lambda = \frac{h}{p} \] h = 6.24  x10-34 Js
      1. non-relativistic particles

        Nota:

        • Momentum \[ p = mv \] \(m \) -mass (kg) \(v = |v| \) -speed \(h\) - plank's constant \(6.62607004\times10-34 Js \) wavelength \[ \lambda = \frac{h}{mv} \]
        1. particles of light

          Nota:

          • photons = quanta of E.M radiation \[ p = hk = h \omega/c \rightarrow \lambda = \frac{h}{p} = \frac{2 \pi h}{p} = \frac{2 \pi h}{\omega} =Tc \]   \(\lambda \) - wavelength\(T\) -oscillation period \(\omega \) - frequency\(k = 2 \pi / \lambda \) - wave-number
          1. Energy of photon

            Nota:

            • \(E = h \mu \) \( \lambda = \frac{h}{p} \) \[ E  = \frac{hc}{\lambda} = pc \] \( \mu \) - period
          2. kinetic Energy

            Nota:

            • \[\frac{1}{2} mv^2 = \frac{1}{2} pv =  \frac{p^2}{2m} \]
          3. momentum >= 0

            Nota:

            • Energy is never zero Always ground amount of energy p =mv = kg m/s
        2. quantised

          Nota:

          • comes in discrete portions -Enger in light particles
          1. Black body radiation

            Nota:

            • how heated bodies radiate 
            1. Rayleigh-Jeans intensty spectrum result

              Nota:

              • \[ I(\lambda ) = \frac{8 \pi}{ \lambda^4} k_{B} T \]
              1. E.M. radiation

                Nota:

                • -Field that permeates all space Max Planck (1900): Energy of E.M. radiation isquantised (comes in discrete portions): \[ E = nh \omega \]\(n = 0,1,2,3,... \) -  number of excitation quantah - planks constant\( \omega \) - frequency
                1. classically

                  Nota:

                  • Each standing wave or oscillator mode has two degrees of freedom classically, and should have an average thermal energy . \[ k_{B} T \] (classically) ultraviolet  catastrophe
                2. Planck’s (quantum) radiation law

                  Nota:

                  • \[ I(\lambda ) = \frac{8 \pi hc}{ \lambda^{5} \left(e^{\frac{hc}{ \lambda k_{B} T}} -1\right)} \]
                3. Photo-electric effect
                  1. Atomic spectra

                    Nota:

                    • emission spectrum of atoms consists of just few (discrete) narrow spectral lines at certain wavelengths
                    1. Hydrogen atom spectrum
                      1. Bohr's Rule

                        Nota:

                        • 2π x (electron mass) x (electron orbital speed) x (orbit radius) = (any integer) x h
                        • The energy lost by the electron is carried away by a photon: photon energy = (e’s energy in larger orbit) - (e’s energy in smaller orbit)
                      2. The wave function

                        Nota:

                        • Can only describe quantum systems when closed system (pure states). Open systems are described by density matrix.
                        1. The Schrodinger Equation

                          Nota:

                          • \[ ih \frac{ \Psi}{dt} = -\frac{h^2}{2m} \frac{d^2 \Psi}{dx^2} + V(x,t) \Psi \]
                          1. The particle must be somewhere

                            Nota:

                            • \[ \int_{- \infty}^{\infty} |\Psi( x,t)|^2 dx = 1 \]
                          2. Normalisation
                            1. probabilty density

                              Nota:

                              • \[ <x> = \int_{-\infty}^{+\infty} x |\Psi (x, t)|^2 dx \] expectation value of x^2 \[ <x^2>  = \int_{-\infty}^{+\infty} x^2 |\Psi (x, t)|^2 dx \]
                              • mean variance of particle position, standard deviation. \[ \alpha_{x} = \sqrt{<(\Delta x)^2>} = \sqrt{ <x^2> - <x>^2} \]
                            2. Expectation or mean values

                              Nota:

                              • \[ \langle O \rangle  = \int dx \psi*O(x,p) \psi \]
                              1. coordinate representation
                                1. momentum operator

                                  Nota:

                                  • \[ \hat{p} = -ih \frac{d}{dx} \]
                              2. infinite well
                                1. Energy

                                  Nota:

                                  • \[E_n = \frac{h^2}{2m}(\frac{\pi}{a})^2n^2\]
                                  1. wave function
                                  2. harmonic oscillator
                                    1. length scale

                                      Nota:

                                      • \[l_{ho} = \sqrt{\ hbar /m \omega} \]
                                      1. Properties of raising and lowering operators

                                        Nota:

                                        • \[ \hat{a}_+ \psi_n = \sqrt{n+1}\psi_{n+1} \] \[ \hat{a}_- \psi_n = \sqrt{n}\psi_{n-1} \]

                                      Recursos multimedia adjuntos

                                      Mostrar resumen completo Ocultar resumen completo

                                      Similar

                                      Quantum Mechanics
                                      emmalmillar
                                      Quantum physics
                                      hmccain
                                      Waves
                                      kate.siena
                                      Forces and their effects
                                      kate.siena
                                      Forces and motion
                                      Catarina Borges
                                      AQA Physics P1 Quiz
                                      Bella Statham
                                      GCSE AQA Physics - Unit 3
                                      James Jolliffe
                                      Using GoConqr to study science
                                      Sarah Egan
                                      GCSE AQA Physics 1 Energy & Efficiency
                                      Lilac Potato
                                      Junior Cert Physics formulas
                                      Sarah Egan
                                      P2 Radioactivity and Stars
                                      dfreeman