Samuel Campos Cid
Test por , creado hace más de 1 año

Educación Secundaria Matemáticas Test sobre Test 2. II medio, creado por Samuel Campos Cid el 09/05/2016.

139
1
0
Samuel Campos Cid
Creado por Samuel Campos Cid hace más de 8 años
Cerrar

Test 2. II medio

Pregunta 1 de 10

1

El valor de la expresión \(\sqrt[3]{125}-\sqrt{16}\) es igual a:

Selecciona una de las siguientes respuestas posibles:

  • 1

  • \(\sqrt[6]{109}\)

  • 9

  • 21

  • \(\sqrt{109}\)

Explicación

Pregunta 2 de 10

1

La expresión \(\sqrt{4-x}\) está bien definida para los siguientes valores de \(x\):
(Notar que puedes seleccionar más de una alternativa como correcta)

Selecciona una o más de las siguientes respuestas posibles:

  • \(x=4\)

  • \(x<4\)

  • \(x>4\)

Explicación

Pregunta 3 de 10

1

La expresión \((1-x)^{\frac{4}{3}}\) es equivalente a:

Selecciona una de las siguientes respuestas posibles:

  • \(\sqrt[3]{(1-x)^4}\)

  • \(\sqrt[3]{1^4-x^4}\)

  • \(\sqrt[4]{(1-x)^3}\)

  • \(\sqrt[4]{1^3-x^3}\)

  • \(\sqrt[12]{(1-x)}\)

Explicación

Pregunta 4 de 10

1

Al racionalizar la expresión \(\frac{2}{\sqrt{3}}\) queda la expresión:

Selecciona una de las siguientes respuestas posibles:

  • \(\frac{2\sqrt{3}}{3}\)

  • \(\frac{\sqrt{6}}{3}\)

  • \(\frac{3\sqrt{2}}{3}\)

  • \(\frac{\sqrt{23}}{3}\)

  • \(\frac{\sqrt{6}}{9}\)

Explicación

Pregunta 5 de 10

1

Al racionalizar la expresión \(\frac{3}{\sqrt{3}-1}\) queda la expresión:

Selecciona una de las siguientes respuestas posibles:

  • \(\frac{3(\sqrt{3}-1)}{2}\)

  • \(\frac{3(\sqrt{3}+1)}{2}\)

  • \(\frac{3(\sqrt{3}-1)}{4}\)

  • \(\frac{3(\sqrt{3}+1)}{4}\)

  • \(\frac{3(\sqrt{3})}{2}\)

Explicación

Pregunta 6 de 10

1

La solución de la ecuación \(\sqrt{x+3}-\sqrt{5x-1}=0\) es igual a:

Selecciona una de las siguientes respuestas posibles:

  • 1

  • -1

  • \(\frac{1}{2}\)

  • \(\frac{4}{6}\)

  • No tiene solución en \(\mathbb{R}\)

Explicación

Pregunta 7 de 10

1

Al simplificar la expresión \(\log{30}-\log{5}+\log{2}\) queda la expresión:

Selecciona una de las siguientes respuestas posibles:

  • \(\log{12}\)

  • \(\log{27}\)

  • \(\log{23}\)

  • 12

  • 1

Explicación

Pregunta 8 de 10

1

El área de un rectángulo cuyas medidas de sus lados son \(\sqrt[3]{81}\) y \(\sqrt[3]{24}\) es igual a:

Selecciona una de las siguientes respuestas posibles:

  • \(6\sqrt[3]{9}\)

  • \(\sqrt[3]{105}\)

  • \(2\sqrt[3]{105}\)

  • \(9\sqrt[3]{24}\)

  • \(18\sqrt[3]{3}\)

Explicación

Pregunta 9 de 10

1

La solución de la ecuación \(\log(2x+1)-\log(x)=\log(3)\) es igual a:

Selecciona una de las siguientes respuestas posibles:

  • 1

  • \(\frac{1}{5}\)

  • -1

  • \(-\frac{1}{5}\)

  • No tiene solución en \(\mathbb{R}\)

Explicación

Pregunta 10 de 10

1

Seleccione las alternativas que muestren las verdaderas propiedades de los logaritmos.
(Notar que puede marcar más de una alternativa como correcta)

Selecciona una o más de las siguientes respuestas posibles:

  • \(\log(a)+\log(b)=\log(a\cdot b)\)

  • \(\log(a)-\log(b)=\log(a-b)\)

  • \(\log_{b}b^n=n\)

  • \(\log(a)\cdot \log(b)=\log(a\cdot b)\)

  • \(\log(0)=1\)

  • \(\log(1)=0\)

Explicación