PRÁCTICA 7

Descripción

Para dar un repaso a la última práctica de todas te dejamos este test. ¿Conseguirás superarlo?
Just Do R Proyect
Test por Just Do R Proyect, actualizado hace más de 1 año
Just Do R Proyect
Creado por Just Do R Proyect hace más de 3 años
10
0
1 2 3 4 5 (0)

Resumen del Recurso

Pregunta 1

Pregunta
Si en esta fórmula sustituimos [blank_start]-h[blank_end] y h por a y [blank_start]b[blank_end] respectivamente obtenemos [blank_start]la fórmula de Simpson[blank_end]. El único cambio que también deberemos hacer es escribir [blank_start]b - a[blank_end] en lugar de 2h.
Respuesta
  • h
  • -h
  • 0
  • f(x)
  • c
  • b
  • 0
  • la fórmula de Simpson
  • el método de Montecarlo
  • la fórmula de Newton
  • la fórmula interpoladora
  • c - a
  • a - b
  • b - a
  • a - c
  • 0 - a
  • a - 0

Pregunta 2

Pregunta
Las variables que debemos definir como conocidas antes de ejecutar el programa son...
Respuesta
  • B, A y d(x)
  • B, n y A
  • M, A y n

Pregunta 3

Pregunta
La función de la que vamos a obtener el polinomio aproximador, d(x), la definiríamos en R como...
Respuesta
  • e^x*sen(x)
  • e^(x)*sen(x)
  • exp(x)*sen(x)
  • exp(x)*sin(x)

Pregunta 4

Pregunta
Debemos hacer bucles anidados para diseñar este programa.
Respuesta
  • True
  • False

Pregunta 5

Pregunta
Para dividir la venta gráfica en dos secciones, una arriba y otra abajo, deberemos ejecutar...
Respuesta
  • par(mrow=c(1,2))
  • par(mfrow=c(1,2))
  • par(mfrow=c(2,1))
  • par(mrow=c(2,1))

Pregunta 6

Pregunta
Si buscamos igualar las escalas de dos funciones para mostrar el gráfico ajustado deberemos hacer uso de...
Respuesta
  • ylim=c() para definir el intervalo en el eje de las abcisas y xlim=c() para indicar el intervalo de las ordenadas.
  • xlim=c() para definir el intervalo en el eje de las abcisas y ylim=c() para indicar el intervalo de las ordenadas.
  • xlimit=c() para definir el intervalo en el eje de las abcisas y ylimit=c() para indicar el intervalo de las ordenadas.
  • ylimit=c() para definir el intervalo en el eje de las abcisas y xlimit=c() para indicar el intervalo de las ordenadas.

Pregunta 7

Pregunta
En el método de Montecarlo, a mayor número de puntos colocados al azar, la aproximación es mejor.
Respuesta
  • True
  • False

Pregunta 8

Pregunta
Para definir el color de los distintos puntos creamos un [blank_start]vector[blank_end] (p.e. de nombre "kolor") que primeramente inicializaremos a [blank_start]0[blank_end] y a continuación, dentro de la estructura condicional, le asignaremos "[blank_start]orange[blank_end]" o "blue" en función de si cae dentro o fuera de la curva de la que tratamos de averiguar el área. De este modo, a la hora de crear las gráficas, igualaremos el comando [blank_start]col[blank_end] al vector kolor y así cada punto quedará correctamente coloreado.
Respuesta
  • vector
  • 0
  • orange
  • col
Mostrar resumen completo Ocultar resumen completo

0 comentarios

There are no comments, be the first and leave one below:

Similar

Gramática para practicar el First Certificate I
Diego Santos
Primera Guerra Mundial
juanmadj
SISTEMA REPRODUCTOR HUMANO
Ingrith Salamanca
La Dictadura Franquista Selectividad
Diego Santos
Dinamica de Grupos
Monica Espinoza
CÓDIGO FISCAL DE LA FEDERACIÓN
ERNESTO CABALLERO LANDEROS
Mapa mental: Bases epistemológicas
Ana Yolima Gutierrez Sabogal
Currículum de la Educación Infantil
Montserrat Gorrín Méndez
INDUCCION A PROCESOS PEDAGOGICOS
Francia Helena Vasquez Fonseca
ISLAMISMOA_plantilla
Txemi López