Created by Freddy Ulate Agüero
over 10 years ago
|
||
Question | Answer |
\[ \int_{a}^{a} f(x) dx = \] | \[ 0 \] |
\[ \int_{a}^{b} f(x) dx = \] | \[ - \int_{b}^{a} f(x) dx = \] |
\[ \int_{a}^{b} c dx = \] | \[ c(b-a), c constante \] |
\[ \int_{a}^{b} [f(x) \pm g(x)] dx = \] | \[ \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx \] |
\[ \int_{a}^{b} cf(x) dx = \] | \[ c \int_{a}^{b} f(x) dx = \] |
\[ \int_{a}^{b} f(x) dx = \] | \[ \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \] |
\[ \mbox{Si} \,\, f(x) \geq 0 \,\, para \,\, a \leq x \leq b \] | \[ \int_{a}^{b} f(x) dx \geq 0 \] |
\[Si \,\, f(x) \geq g(x) \,\, para \,\, a \leq x \leq b \] | \[ \int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx \] |
Want to create your own Flashcards for free with GoConqr? Learn more.