Integrales

Description

Identificar el método de integración
Ceci Mendoza
Flashcards by Ceci Mendoza, updated more than 1 year ago
Ceci Mendoza
Created by Ceci Mendoza over 6 years ago
49
1

Resource summary

Question Answer
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
u substitution
algebraic sub
u substitution
u substitution
u substitution
algebraic sub
algebraic sub
u substitution
u substitution
u substitution
u substitution
u substitution
Basic Integral
u substitution
u substitution
u substitution
u substitution
by parts
algebraic sub
u substitution
algebraic sub
algebraic sub
algebraic sub
by parts
u substitution
u substitution
by parts
u substitution
by parts
by parts
algebraic sub
by parts
by parts
by parts
algebraic sub
u substitution
u substitution
Basic Integral
by parts =90u^2
algebraic sub
u substitution
u substitution (caso con 2 "u")
by parts
by parts
by parts
by parts
by parts
by parts
algebraic sub
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
Basic Integral
algebraic sub =1.34933 u^2
algebraic sub =0.3214 u^2
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
algebraic sub
u substitution
u substitution
u substitution
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers (la otra respuesta con "cos" y signos contrarios)
trigonometric powers (even powers)
trigonometric powers (even powers)
trigonometric powers (even powers)
trigonometric powers = −0.02864 u^2
trigonometric powers
trigonometric powers (even powers)
trigonometric powers
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution (special case)
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
u substitution
trigonometric powers
trigonometric powers
trigonometric powers = 0.53333 u^2
trigonometric powers
trigonometric powers
trigonometric powers π/4 = 0.785398 u^2
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers
trigonometric powers π/16= 0.1963 u^2
trigonometric powers π/8= 0.3926 u^2
partial fractions A= 1/2 B= -1/10 C= 1/5
partial fractions A= -1/5 B= 1/5
partial fractions A= -1 B= 2 C= 3
partial fractions
partial fractions A= 2 B= -1
partial fractions A= 1/2 B= -1/2 = -0.896 u^2
partial fractions A= -1/2 B= 1/2
partial fractions A= 1/3 B= -2/3
partial fractions A= -2 B= 5
partial fractions A= 5 B= -2
partial fractions A= 1/6 B= -1/6
partial fractions A= 1/10 B= -1/10
partial fractions A= 5/8 B= 3/8
partial fractions A= 1/15 B= 3/5 C= -2/3
partial fractions A= -1/2 B= 1/2
partial fractions A= -1/3 B= 1/3
partial fractions A= 2/3 B= -1/3 [2/3ln(x+2) -1/6ln(2x+1)+c]
partial fractions A= 12/7 B= -5/7
partial fractions A= 6 B= -3/2 C= -7/2
partial fractions A= -1/4 B= 19/8 C= 23/8
partial fractions A= -1/4 B= 2 C= -7/4
Show full summary Hide full summary

Similar

Ecuaciones (Primer Grado)
Diego Santos
Fórmulas Geométricas (Perímetros)
Diego Santos
7 Técnicas para Aprender Matemáticas
maya velasquez
Matemáticasen la VidaCotidiana
Diego Santos
FRACCIONES...
JL Cadenas
FRACCIONES...
Ulises Yo
Factorización de expresiones algebraicas_1
Juan Beltran
CÁLCULOS con [ 3 · 5 · 7 ]
JL Cadenas
Preguntas del Pensamiento Matemático
Diego Santos
Factorización de Expresiones Algebráicas
maya velasquez
Matrices y Determinantes
Diego Santos