Created by Samantha Ochoa
almost 5 years ago
|
||
Question | Answer |
RESOLUCIÓN DE ECUACIONES CUADRÁTICAS, USANDO EL MÉTODO DE FACTORIZACIÓN | Cuando un polinomio es igual a cierto valor (ya sea un entero u otro polinomio), el resultado es una ecuación. Una ecuación que puede ser escrita de la forma ax2 + bx + c = 0 se llama ecuación cuadrática. |
La Propiedad Cero de la Multiplicación | La Propiedad Cero de la Multiplicación establece (¡en términos algebraicos, por supuesto!) algo que todos siempre hemos sabido: si el producto de dos números es 0, entonces por lo menos uno de los factores es 0. |
Propiedad Cero de la Multiplicación | Si ab = 0, entonces ya sea a = 0 o b = 0, o ambos a y b son 0. |
Esta propiedad tiene importantes implicaciones en cómo resolvemos ecuaciones cuadráticas: significa que si tenemos un polinomio factorizado igual a 0, podemos estar seguros de que al menos uno de sus factores es también 0. Podemos usar este método para identificar soluciones de una ecuación. | Pero nos estamos adelantando — empecemos con un ejemplo de una ecuación cuadrática y pensemos en cómo resolverla. La ecuación 5a2 + 15a = 0 es una ecuación cuadrática porque puede escribirse como 5a2 + 15a + 0 = 0, que es equivalente a la forma ax2 + bx + c = 0, con c = 0. |
En este punto hemos factorizado completamente el lado izquierdo de la ecuación. Si sólo quisiéramos factorizar la expresión, podríamos parar aquí, pero recuerda que estamos resolviendo a de la ecuación. | |
Aquí es donde usamos la Propiedad Cero de la Multiplicación. Ya que toda la expresión es igual a cero, sabemos que por lo menos uno de los términos, 5a o (a + 3), tiene que ser igual a cero. Vamos a continuar con la solución de este problema igualando cada término a cero y resolviendo las ecuaciones. | |
Resultan dos valores posibles de a: 0 y -3. (Estos valores también se llaman raíces de la ecuación.) Para comprobar nuestras respuestas, podemos sustituir ambos valores directamente en nuestra ecuación original y ver si obtenemos una expresión válida para cada una. |
Want to create your own Flashcards for free with GoConqr? Learn more.