Importancia y aplicación de la estadística

Description

Flashcards on Importancia y aplicación de la estadística, created by Karenka Maldonado on 13/05/2020.
Karenka Maldonado
Flashcards by Karenka Maldonado, updated more than 1 year ago More Less
Albaro Cortes riveros
Created by Albaro Cortes riveros over 4 years ago
Karenka Maldonado
Copied by Karenka Maldonado over 4 years ago
3
0

Resource summary

Question Answer
Estadística aplicada "conjunto de procedimientos para reunir, medir, clasificar, codificar, computar, analizar y resumir información numérica adquirida sistemáticamente" (Ritchey, 2008: 1). Funciones de la estadística 1. La descripción; el resumen de la información de tal modo que se pueda emplear mejor. 2. Y la inducción que consiste en formular generalizaciones a propósito de una determinada población sobre la base de una muestra extraída de la misma. Campo de la estadística • Estadística Descriptiva o Deductiva Es aquélla que se ocupa de describir y analizar un grupo determinado, sin que este estudio permita sacar conclusiones científicamente valederas de una muestra mayor. Se recolecta, presenta y caracteriza un conjunto de datos a fin de describir en forma apropiada las diversas características de éstos; es decir, un estudio se considera descriptivo cuando solamente se analizan y describen datos. • Estadística Inferencial o Inductiva Es aquélla que se ocupa de inferir importantes conclusiones de una población a partir de una muestra representativa. La inferencia estadística también se ocupa de estructurar una muestra representativa de la población en estudio, con el fin de diseñar modelos, inferencias, tendencias y predicciones sobre su comportamiento a partir de la aleatoriedad de las observaciones. Ese diseño se conseguiría empleando técnicas como la prueba de hipótesis, las estimaciones, la correlación, el análisis de regresión, las series de tiempo, la minería de datos, etc.
Importancia y aplicación de la estadística • Radica en sus grandes aplicaciones en las diferentes actividades. • Es de vital importancia en la toma de decisiones, ya que suministra la información necesaria para valorar planes y programas. • Su adecuada utilización dependerá en especial del conocimiento, habilidad y experiencia de quién la emplea. Métodos Son procedimientos para manejar datos cuantitativos y cualitativos mediante técnicas de: • recolección, • recuento, • presentación, • descripción y • análisis. Estos permiten comprobar hipótesis o establecer relaciones de causalidad en un determinado fenómeno.
Clasificación de la estadística • Descriptiva o deductiva: Se encarga de mostrar el resultado de los datos estudiados de forma específica. • Inferencial o inductiva: Ofrece resultados junto con datos generales de investigación amplía. • Aplicada: Proporciona resultados específicos y generalizados sobre la investigación. • Matemática: Realiza los procesos de estadística deductiva o inferencial, y se utilizará el álgebra además de ciertos análisis más para ofrecer un punto de vista enfocado y formal. Cálculos de la estadística El cálculo de parámetros estadísticos de una secuencia es muy importante, puesto que la mayoría de los modelos y métodos matemáticos se basan en suposiciones simples. Por ejemplo, la normalidad de la ley de distribución o valor de dispersión, u otros parámetros. Por tanto, al analizar y pronosticar series cronológicas necesitamos una herramienta simple y conveniente que nos permita calcular de forma rápida y clara los principales parámetros estadísticos. Supongamos que hay un proceso estacionario que sucede de forma infinita en el tiempo, que se puede representar como una secuencia de muestras discretas. • Llamemos a esta secuencia de muestras la población general. Una parte de las muestras seleccionadas de la población general se llamará muestra de la población general, o un muestreo de N muestras; supongamos que no conocemos ningún parámetro, de modo que los calcularemos en base a un muestreo infinito.
Gráficas Los datos numéricos obtenidos en un estudio estadístico pueden presentarse de forma visual a través de gráficas estadísticas, lo que hace que sean más fácilmente comprensibles. Para ello primero debemos tener nuestros datos acomodados en tablas de frecuencias. Algunos tipos de graficas son: • Diagrama de barras Pasos de construcción: 1. Se construyen dos ejes. 2. En el eje horizontal, o eje de abscisas, se representan los datos o modalidades obtenidos. 3. En el eje vertical, eje de ordenadas, se representan con números las frecuencias de cada dato o modalidad. 4. Sobre el eje horizontal se levantan barras o rectángulos de igual base hasta la altura del valor numérico de la frecuencia de cada modalidad. • Diagrama de líneas (polígono de frecuencias). El proceso es muy similar al empleado en los gráficos de barras: 1. En el eje horizontal, abscisas, se representan los datos. 2. En el eje vertical, ordenadas, se representan los valores de cada dato si la variable es cuantitativa o la frecuencia de cada dato si la variable es cualitativa. 3. Se trazan puntos o marcas que representan esos datos y se unen con segmentos.
• Diagrama de sectores En un diagrama de sectores cada dato viene representado mediante un sector circular cuyo ángulo es proporcional a su frecuencia absoluta. 1. El ángulo del sector se calcula dividiendo 360 (los grados de un círculo completo) entre el número de datos y multiplicando el resultado por la frecuencia de cada dato. 2. La fórmula para hallar estos cálculos es la siguiente: Se construye cada sector con un transportador de ángulos
Medidas de tendencia central para ubicar el dentro de los datos • Media • Mediana • Moda Clasificación de medidas  Asimetría  Sesgo : Denota la deformación horizontal de la curva Mayor a cero, una cola más alargada hacia la derecha (positiva) Menor a cero, con una cola más larga hacia la izquierda (negativa)  Curtosis: Mayor a cero se le denomina leptocurtica (apuntamiento alto de la curva) Igual a cero a este tipo de curva se le denomina mesocurtica (apuntamiento normal de la curva) Menor a cero a este tipo de curva se le denomina platicurtica (apuntamiento bajo la curva). Medidas de dispersión • Cuartiles (Q): Son 3 valores que dividen a la distribución en 4 • Deciles (D): Son 9 valores que dividen la distribución en 10 • Percentiles (P): Son 99 que dividen en 5 parte.
Elementos de la estadística •Cualquier elemento o ente que sea portador de información sobre alguna propiedad en la cual se está interesado se denomina individuo. •Población: El conjunto de todos los individuos en los que se desea estudiar alguna propiedad o característica. 1. Finita 2. Infinita • Muestra: subconjunto finito de la población sobre el que se realice el estudio de la propiedad deseada. •Al número de individuos de este subconjunto se le llama tamaño de la muestra. •Parámetro: función definida sobre los valores numéricos de características medibles de una población. •Estadístico: función definida sobre los valores numéricos de una muestra. •Caracteres: propiedades, rasgos o cualidades de los elementos de la población y se dividen en cuantitativos y cualitativos. •Modalidades: diferentes situaciones posibles de un carácter. Las modalidades deben ser a la vez exhaustivas y mutuamente excluyentes. •Clases: conjunto de una o más modalidades en el que se verifica que cada modalidad pertenece a una o más clases.
Marketing Muchas decisiones emergentes de estudios de mercado se pueden ver fortalecidas por el uso adecuado de la estadística. Sin embargo, no se debe perder de vista que, en la medida que se pueda obtener información en función a variables cuantitativas; el uso de la estadística será mucho más enriquecedora como información hacia los ejecutivos para la toma de decisiones. La información constituye la base del marketing; se define como el conjunto de datos que tienen el potencial de influir en las decisiones de la gestión. En la medida en que los responsables de marketing no pueden controlar todos los factores de una situación dada, hay siempre el riesgo de que hagan una elección errónea; tales elecciones erróneas cuestan dinero. (Gómez, 2013). Poseer información debidamente trabajada constituye una fuente de ventaja competitiva de difícil imitación por parte de los competidores; sin embargo, el contar con gente capacitada para realizar el análisis de manera objetiva y contextualizada es el reto que se hace difícil para las organizaciones. No se debe olvidar que la obtención de datos y la posterior generación de información para la toma de decisiones debe obedecer a que las empresas cuenten claridad de los dilemas gerenciales en los que se encuentran y a los que posiblemente pueden enfrentarse a futuro, además de que puedan tener la capacidad de transformar estos dilemas en protocolos claros y sistemáticos que guíen los procesos de investigación de manera objetiva.
Aragon Juarez Paola Bojorges Puebla Karen Karina Cortes Riveros Alvaro Tellez Sanchez Natalia Itzel
Show full summary Hide full summary

Similar

importancia y aplicacion de la estadistica
Albaro Cortes riveros
Importancia y aplicación de la estadística
Karenka Maldonado
Importancia y aplicación de la estadística
Karenka Maldonado
Estadística
Melody Time
Estadística
Ada Rivera8233
Estadística Ada
Ada Rivera8233
Harry Potter Trivia Quiz
Andrea Leyden
Biology Unit 1a - GCSE - AQA
RosettaStoneDecoded
New GCSE history content
Sarah Egan
MICROSOFT WORD 2013 SKILLS FOR WORK
John O'Driscoll
What are they doing?
Tamara Urzhumova