Basic Derivative Rules

Description

Basic Derivative Rules
Murron Carroll
Flashcards by Murron Carroll, updated more than 1 year ago More Less
Bill Andersen
Created by Bill Andersen over 9 years ago
Murron Carroll
Copied by Murron Carroll over 5 years ago
1
0

Resource summary

Question Answer
Derivatives Derivatives
Basic Rules Basic Rules
Constant Rule \[f(x)=k\] \[f'(x)=0\]
Constant Multiple Rule \[f(x)=kx\] \[f'(x)=k\]
Power Rule \[f(x)= x^\mathrm{n}\] \[f'(x)= \mathrm{n}\cdot x^\mathrm{n-1}\]
Sum/Difference rule \[ y= f(x) + g(x) \] \[ y'= f'(x) + g'(x) \]
Product Rule \[y = f(x)g(x) \] \[y' = f(x)g'(x)+g(x)f'(x) \]
Quotient Rule \[y = \frac {f(x)} {g(x)} \] \[y' = \frac {g(x)f'(x)-f(x)g'(x)} {\left( g(x) \right) ^2} \]
Trig derivatives Trig derivatives
\[f(x)=\sin x\] \[f'(x)=\cos x\]
\[f(x)=\cos x\] \[f'(x)=-\sin x\]
\[f(x)=\tan x\] \[f'(x)=\sec^2 x\]
\[f(x)=\sec x\] \[f'(x)=\sec x \cdot \tan x\]
\[f(x)=\csc x\] \[f'(x)= - \csc x \cdot \cot x\]
\[f(x)=\cot x\] \[f'(x)= - \csc^2 x \]
\[f(x)=\tan^{-1} x\] \[f'(x)= \frac{1}{1+x^2} \]
\begin{equation*} \frac{d}{dx} \left[ \sin^{-1}x \right] = \end{equation*} \begin{equation*} \frac{1}{\sqrt{1-x^2}} \end{equation*}
Show full summary Hide full summary

Similar

Translations and transformations of functions
Christine Laurich
Limits AP Calculus
lakelife62
The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
Calc 1 Exam 2
Sterling Werfal
CBHS Derivatives
Elizabeth Nguyen