Question | Answer |
Derivatives | Derivatives |
Basic Rules | Basic Rules |
Constant Rule \[f(x)=k\] | \[f'(x)=0\] |
Constant Multiple Rule \[f(x)=kx\] | \[f'(x)=k\] |
Power Rule \[f(x)= x^\mathrm{n}\] | \[f'(x)= \mathrm{n}\cdot x^\mathrm{n-1}\] |
Sum/Difference rule \[ y= f(x) + g(x) \] | \[ y'= f'(x) + g'(x) \] |
Product Rule \[y = f(x)g(x) \] | \[y' = f(x)g'(x)+g(x)f'(x) \] |
Quotient Rule \[y = \frac {f(x)} {g(x)} \] | \[y' = \frac {g(x)f'(x)-f(x)g'(x)} {\left( g(x) \right) ^2} \] |
Trig derivatives | Trig derivatives |
\[f(x)=\sin x\] | \[f'(x)=\cos x\] |
\[f(x)=\cos x\] | \[f'(x)=-\sin x\] |
\[f(x)=\tan x\] | \[f'(x)=\sec^2 x\] |
\[f(x)=\sec x\] | \[f'(x)=\sec x \cdot \tan x\] |
\[f(x)=\csc x\] | \[f'(x)= - \csc x \cdot \cot x\] |
\[f(x)=\cot x\] | \[f'(x)= - \csc^2 x \] |
\[f(x)=\tan^{-1} x\] | \[f'(x)= \frac{1}{1+x^2} \] |
\begin{equation*} \frac{d}{dx} \left[ \sin^{-1}x \right] = \end{equation*} | \begin{equation*} \frac{1}{\sqrt{1-x^2}} \end{equation*} |
Want to create your own Flashcards for free with GoConqr? Learn more.