sin and cos of special angles [0, 2pi]

Description

Values of sin and cos at special angles between 0 and 2 pi
laura.kinnel
Flashcards by laura.kinnel, updated more than 1 year ago
laura.kinnel
Created by laura.kinnel over 9 years ago
76
0

Resource summary

Question Answer
\[\sin\dfrac{\pi}{6}\] \[\dfrac{1}{2}\]
\[\sin 0\] \[0\]
\[\sin \pi\] \[0\]
\[\sin 2\pi\] \[0\]
\[\sin\frac{\pi}{6}\] \[\frac{1}{2}\]
\[\sin\frac{5\pi}{6}\] \[\frac{1}{2}\]
\[\sin\frac{7\pi}{6}\] \[-\frac{1}{2}\]
\[\sin\frac{11\pi}{6}\] \[-\frac{1}{2}\]
\[\sin\frac{\pi}{4}\] \[\frac{\sqrt{2}}{2}\]
\[\sin\frac{3\pi}{4}\] \[\frac{\sqrt{2}}{2}\]
\[\sin\frac{5\pi}{4}\] \[-\frac{\sqrt{2}}{2}\]
\[\sin\frac{7\pi}{4}\] \[-\frac{\sqrt{2}}{2}\]
\[\sin\frac{\pi}{3}\] \[\frac{\sqrt{3}}{2}\]
\[\sin\frac{2\pi}{3}\] \[\frac{\sqrt{3}}{2}\]
\[\sin\frac{4\pi}{3}\] \[-\frac{\sqrt{3}}{2}\]
\[\sin\frac{5\pi}{3}\] \[-\frac{\sqrt{3}}{2}\]
\[\sin\frac{\pi}{2}\] \[1\]
\[\sin\frac{3\pi}{2}\] \[-1\]
\[\cos 0\] \[1\]
\[\cos \pi\] \[-1\]
\[\cos 2\pi\] \[1\]
\[\cos\frac{\pi}{6}\] \[\frac{\sqrt{3}}{2}\]
\[\cos\frac{5\pi}{6}\] \[-\frac{\sqrt{3}}{2}\]
\[\cos\frac{7\pi}{6}\] \[-\frac{\sqrt{3}}{2}\]
\[\cos\frac{11\pi}{6}\] \[\frac{\sqrt{3}}{2}\]
\[\cos\frac{\pi}{4}\] \[\frac{\sqrt{2}}{2}\]
\[\cos\frac{3\pi}{4}\] \[-\frac{\sqrt{2}}{2}\]
\[\cos\frac{5\pi}{4}\] \[-\frac{\sqrt{2}}{2}\]
\[\cos\frac{7\pi}{4}\] \[\frac{\sqrt{2}}{2}\]
\[\cos\frac{\pi}{3}\] \[\frac{1}{2}\]
\[\cos\frac{2\pi}{3}\] \[-\frac{1}{2}\]
\[\cos\frac{4\pi}{3}\] \[-\frac{1}{2}\]
\[\cos\frac{5\pi}{3}\] \[\frac{1}{2}\]
\[\cos\frac{\pi}{2}\] \[0\]
\[\cos\frac{3\pi}{2}\] \[0\]
Show full summary Hide full summary

Similar

Maths C4 Trig formulae (OCR MEI)
Zacchaeus Snape
Pythagorean Theorem Quiz
Selam H
Geometry Vocabulary
patticlj
Algebra 2 Quality Core
Niat Habtemariam
Trigonometry, Equations, Pythagoras theorem
Caitlin Mortlock
Lines and Triangles
Jadéjah Robinson
GRE Study Precalc
Marissa Miller
Trig Values: Unit Circle
Bill Andersen
Exact Values
Selina Koo
Solve the Right Triangle with Trig
Cassidy Paine
Trig
A Y