Question | Answer |
Factorise \[3x^2 +12x\] | \(3x(x+4)\) |
Expand \((x+2)^2\) | \(x^2+4x+4\) |
Factorise \[x^2-3x-18\] | \((x-6) (x+3)\) |
Expand \[(2a+5)(2a-5)\] | \[4a^2-25\] |
Factorise \[a^2-9\] | \[(a+3)(a-3)\] |
Simplify \[ \frac{x+2}{3} + \frac{x-3}{4}\] | \[\frac{7x-1}{12}\] |
Simplify \[\frac{2(x+1)}{x^2+2x-3} + \frac{3(x+3)}{x^2+2x-3} \] | \(\frac{5x+7}{x^2+2x-3} \) |
Expand \[(a^2-4)(a-2)\] | \(a^3-2a^2-4a+8\) |
Remember \[FOIL\] | \[First\] \[Outsides\] \[Insides\] \[Last\] |
Simplify \[\frac{3a}{a^2-4} + \frac{2}{a-2} \] | \(\frac{5a^2-6a-8}{a^3-2a^2-4a+8} \) |
Find \(X\) \[\frac{5x-3}{2} + \frac{x+7}{3} \] \[=15\] | \(x=5\) |
Find \(X\) \[\frac{2}{x+8} + \frac{1}{x-2}\] \[=\frac{1}{3}\] | \(x = 7 or -4\) |
What's the quadratic formula? | |
Simplify \[\sqrt{48}\] | \[4\sqrt{3}\] |
Simplify \[\sqrt{50}\] | \(5\sqrt{2}\) |
Simplify \[\sqrt{120}\] | \(2\sqrt{30}\) |
Simplify \[\sqrt{45} + \sqrt{20}\] | \(5\sqrt{5}\) |
Rationalise the denominator of \[\frac{2}{\sqrt{3}}\] | \(\frac{2\sqrt{3}}{3}\) |
\(125^\frac{4}{3}\) | \(625\) |
\(3^{-2}\) | \(\frac{1}{9} or \dot{0.1} \) |
\(81^\frac{3}{4}\) | 9 |
Solve \[x^\frac{1}{2} = 3\] | \(x=9\) |
Solve \[x^\frac{1}{2} = \frac{1}{3}\] | \(x=\frac{1}{9}\) |
Solve \(3a-b=17\) \[a+2b=1\] | \( a=5, b=-2 \) |
Want to create your own Flashcards for free with GoConqr? Learn more.