|
|
Created by mariaahbanu
over 10 years ago
|
|
| Question | Answer |
| l | r x Ө |
| radian | π/180 x degree |
| degree | 180/π x radian measure |
| cos^2 x + sin^2 x | 1 |
| 1 + tan^2 x | sec^2x |
| 1 + cot^2 x | cosec^2x |
| cos (2nπ + x) | cosx |
| sin (2nπ + x) | sinx |
| sin(-x) | -sinx |
| cos(-x) | cosx |
| cos(x+y) | cosxcosy-sinxsiny |
| cos(x-y) | coxcosy+sinxsiny |
| cos(π/2-x) | sinx |
| sin(π/2-x) | cosx |
| sin(x+y) | sinxcosy+cosxsiny |
| sin(x-y) | sinxcosy-cosxsiny |
| cos (π/2 + x) | -sinx |
| sin (π/2 + x) | cosx |
| cos (π – x) | –cos x |
| sin (π – x) | sin x |
| cos (π + x) | – cos x |
| sin (π + x) | –sin x |
| cos (2π – x) | cos x |
| sin (2π – x) | –sin x |
| tan(x+y) | tanx+tany / 1-tanxtany |
| tan(x-y) | tanx-tany / 1+tanxtany |
| cot(x+y) | cotxcoty-1 / coty+cotx |
| cot(x-y) | cotxcoty+1 / coty-cotx |
| cos2x | :cos^2 x - sin^2 x :2cox^2 x - 1 :1-2sin^2 x :1-tan^2 x / 1+tan^2 x |
| sin2x | :2sinxcosx :2tanx / 1+tan^2 x |
| tan2x | 2tanx / 1-tan^2 x |
| sin3x | 3sinx - 4sin^3 x |
| cos3x | 4cos^3 x - 3cosx |
| tan3x | 3tanx-tan^3 x / 1-3tan^2 x |
| cosx+cosy | 2cosx+y/2 cosx-y/2 |
| cosx-cosy | -2sinx+y/2 sinx-y/2 |
| sinx+siny | 2sinx+y/2 cosx-y/2 |
| sinx-siny | 2cosx+y/2 sinx-y/2 |
| 2cosxcosy | cos(x+y) + cos(x-y) |
| -2sinxsiny | cos(x+y) - cos(x-y) |
| 2sinxcosy | sin(x+y) + sin(x-y) |
| 2cosxsiny | sin(x+y) - sin(x-y) |
| sinx = 0 | →x = nπ |
| cosx = 0 | →x = (2n+1)(π/2) |
| sin x = sin y | ⇒ x = nπ + (–1)^n y |
| cos x = cos y | ⇒ x = 2nπ ±y |
| tan x = tan y | ⇒ x = nπ + y |
| 2sin^2 X/2 | 1 - cosx |
| 2cos^2 x/2 | 1 + cosx |
| tan θ/2 | 1-cosθ / sinθ |
| sin(A+B) sin(A-B) | :sin^2 A - cos^2 B :cos^2 B - cos^2 A |
| cos(A+B) cos(A-B) | :cos^2 A - sin^2 B :-sin^2 A + cos^2 B |
| tan(A+B) tan(A-B) | tan^2 A-tan^2 B / 1-tan^2 A tan^2 B |
| Sine Formula | sinA/a = sinB/b = sinC/c = k |
| Cosine Formula | :a^2 = b^2 + c^2 -2bccosA :b^2 = c^2 + a^2 -2cacosB :c^2 = a^2 + b^2 -2abcosC :CosA = (b^2 +c^2 -a^2)/2bc :CosB = (c^2 +a^2 -b^2)/2ac :CosC = (a^2 +b^2 -c^2)/2ab |
Want to create your own Flashcards for free with GoConqr? Learn more.