|
|
Created by Syed Hamza
about 3 years ago
|
|
| Question | Answer |
| ∫ 1 dx | x + C |
| ∫ a dx | ax + C |
| ∫ xn dx | ((xn+1)/(n+1)) + C |
| ∫ sin x dx | – cos x + C |
| ∫ cos x dx | sin x + C |
| ∫ sec2x dx | tan x + C |
| ∫ cosec2x dx | – cot x + C |
| ∫ sec x (tan x) dx | sec x + C |
| ∫ cosec x ( cot x) dx | – cosec x + C |
| ∫ (1/x) dx | log |x| + C |
| ∫ ex dx | ex+ C |
| ∫ ax dx | (ax / log a) + C |
| ∫ tan x dx | log | sec x | + C |
| ∫ cot x dx | log | sin x | + C |
| ∫ sec x dx | log | sec x + tan x | + C |
| ∫ cosec x dx | log | cosec x – cot x | + C |
| ∫ 1 / √ ( 1 – x2 ) dx | sin – 1 x + C |
| ∫ 1 / √ ( 1 – x2 ) dx | cos – 1 x + C |
| ∫ 1 / √ ( 1 + x2 ) dx | tan – 1 x + C |
| ∫ 1 / √ ( 1 + x2 ) dx | cot – 1 x + C |
Want to create your own Flashcards for free with GoConqr? Learn more.