EQUAÇÕES DIFERENCIAIS - EDO

Description

Calculo III Mind Map on EQUAÇÕES DIFERENCIAIS - EDO, created by Layrisson Jordi on 04/04/2018.
Layrisson Jordi
Mind Map by Layrisson Jordi, updated more than 1 year ago
Layrisson Jordi
Created by Layrisson Jordi over 6 years ago
41
0

Resource summary

EQUAÇÕES DIFERENCIAIS - EDO
  1. Importância
    1. Modela problemas físicos
      1. Crescimento e decrecimento
    2. Equações separáveis
      1. P(y) dy/dx = q(x)
        1. Passos
          1. Separar variáveis em cada membro
            1. Integrar ambos os lados
              1. Se existirem condições iniciais, aplicar na equação
        2. Fator Integrante
          1. y'(+)+P(+)y(+= f(t)
            1. Passos
              1. Verificar se está na forma geral
                1. Identificar o p(t) e encontrar o F.I
                  1. Multiplicar toda equação pelo F.I
                    1. O lado esquerdo da equação: é derivado do produto de F.I e da variável endependente y
                      1. d/dt [y.ʮ(t)]
                        1. Resolver a equação e isolar o y
                      2. ʮ(t)=e(^ʃp(t)dt)
                2. Funções Homogêneas
                  1. f(ʎx,ʎy)=ʎ(^n).f(x,y)
                    1. n = grau de homogeneidade
                      1. Uma EDO é dita homogênea se f(x,y) for de grau zero
                      2. Substituição proposta
                        1. v=y/x
                          1. Passos
                            1. Verificar forma geral
                              1. Fazer a substituição proposta
                                1. Resolver a separação de variáveis
                        2. Equação de Bernoulli
                          1. Passos
                            1. Verificar forma geral
                              1. Identificar o termo não-linear
                                1. Dividir toda a equação pelo termo não-linear
                                  1. Fazer a substituição proposta
                                    1. Colocar na forma geral dos F.I. e resolver pelo método dos F.I.
                            2. Dy/Dx + P(x)y = f(x)y^n
                              1. Em que "n" é um número real e para n=0 e n=1, a equação é linear em y.
                                1. n ≠ 0 e n ≠ 1
                                  1. V = y^1-n
                                    1. V' = (1-n)(y^-n)(y')
                              2. Equação Exata
                                1. Expressão M(x,y)dx + N(x,y)dy=o
                                  1. Teorema Uma EDO é exata se somente se , DM/DY = DN/DX
                                    1. Para M e N funções continuas e suas derivadas parciais continua
                                      1. Existe uma função Ψ(x,y) ϬΨ/Ϭx = M e ϬΨ /Ϭy = N
                                  Show full summary Hide full summary

                                  Similar

                                  Crime and Deviance with sociological methods key terms
                                  emzelise1996
                                  All math revision
                                  katiehumphrey
                                  Economic Growth
                                  Kati Christova
                                  Speed, Distance, Time
                                  Bradley Sansom
                                  John Montague
                                  David Caprani
                                  Chemistry C1
                                  Phoebe Drew
                                  A View from the Bridge
                                  Mrs Peacock
                                  An Inspector Calls - ACT 1
                                  shonarstart
                                  Geography Section 1 (Rivers and Coasts)
                                  Beth Goodchild
                                  Organic Nomenclature
                                  mahnoor.gohar
                                  Část 2.
                                  Gábi Krsková