Computer science algorithm.

Description

This mind map i will go over the algorithm kinds and types.
Enéas Silva
Mind Map by Enéas Silva, updated more than 1 year ago
Enéas Silva
Created by Enéas Silva almost 7 years ago
32
0
1 2 3 4 5 (0)

Resource summary

Computer science algorithm.
  1. Machine learn
    1. why Used
      1. Decisions about data
        1. Learn
          1. From data
        2. Scientists Says:
          1. Set of techniques
            1. Inside
              1. Even more ambitious goal
                1. Artificial inteligence
          2. What they do conceptualy
            1. Clasification
              1. Clasify some thing
                1. Analyzing
                  1. Data
                2. Algorithm name
                  1. Clasifier
                    1. Features
                      1. Values that usefully
                        1. Characterize
                          1. Things
                            1. we whish to clasify
                        2. Example
                          1. Moth Clasifier
                            1. 2 -Features
                              1. Wingspan
                                1. Mass
                                2. Training Data
                                  1. Entomologist
                                    1. Colect Data to process
                                      1. Luna
                                        1. Emperor moths
                                          1. Labeled Data

                                            Annotations:

                                            • LAbel data is a Tabel which and especialisty classify the kind of subject he is searching giving them some classification acordingly with its features. Whic is some values sizes or references to comparation.
                                  2. Represent lines in graphs
                                    1. X
                                      1. WingSpan
                                        1. Space
                                        2. Y
                                          1. Mass
                                            1. Time
                                          2. used to
                                            1. plot Data
                                              1. overlap
                                                1. Meaning
                                                  1. To have something in comon
                                                    1. TO ocupy the same area in part
                                                    2. Machine Learn Algorithm
                                                      1. Find Optimal
                                                        1. Seplaratkon
                                                          1. Clasification
                                                            1. Condition
                                                              1. X-axis
                                                                1. X(Wing Span) < 45 mm
                                                                  1. Emperor Moth
                                                                2. Y-axis
                                                                  1. Y(mass) < .75
                                                                    1. Emperor Moth

                                                                      Annotations:

                                                                      • So It takes both features to consideration and clasify within the group which one is an emperor moth and which one is the emperor moth
                                                    3. Training Data
                                                      1. Some especialist
                                                        1. Colect & Organize
                                                          1. Data
                                                  2. BAsicaly compare
                                                    1. Images
                                                      1. Sound
                                                        1. Touch
                                                        2. Decision Tree
                                                            1. Algorithm forests
                                                              1. Contains alot tree algorithm
                                                            2. Support vector machine
                                                              1. Dry lines in the graph
                                                                1. Polynomials
                                                                  1. other fancy math mathematical function
                                                                    1. To find the most accurate decision baundaries
                                                                    2. 3 lines 3D decision baundaries
                                                                2. algorithm
                                                                  1. Job
                                                                    1. at a high level
                                                                      1. Maximize
                                                                        1. Correct classification

                                                                          Annotations:

                                                                          • The algorith compare the data given to it. And try to organize in the most efective way the subejcts and informations given o it.
                                                                        2. Minimize errors
                                                                    2. Artificial Neural Network
                                                                      1. Neurons
                                                                        1. Cells
                                                                          1. Process
                                                                            1. one or more impulses
                                                                              1. from other cells
                                                                            2. Transmit
                                                                              1. Messsges
                                                                                1. using
                                                                                  1. Signals
                                                                                    1. Electrical
                                                                                      1. chemical
                                                                                  2. Their own signal to other cells
                                                                              2. Artificial Neurons
                                                                                1. Take a series of inputs
                                                                                  1. Combine them
                                                                                    1. Emits a signal

                                                                                      Annotations:

                                                                                      • Rather than beig electrical or chemical signals, artificial neurons take numbers in and spit numbers out.
                                                                                  2. Takes data entry
                                                                                    1. Process
                                                                                      1. artifical neral network
                                                                                        1. organize and analyze features
                                                                                          1. Spit out the information
                                                                                    2. First Layer
                                                                                      1. Imput Layer
                                                                                        1. Data needing classification
                                                                                          1. X-axis
                                                                                            1. Wing Span
                                                                                              1. Space
                                                                                              2. Y-axis
                                                                                                1. Mass
                                                                                                  1. Time
                                                                                            2. Last layer
                                                                                              1. Output layer
                                                                                                1. Emperor Moth
                                                                                                  1. Luna Moth
                                                                                                    1. Activation Function or transfer function
                                                                                                      1. Perform a final mathematical modifications
                                                                                                        1. To result
                                                                                                          1. For example
                                                                                                            1. Limiting value to a range
                                                                                                              1. from -1 to +1
                                                                                                              2. seting any negative values
                                                                                                                1. To zero
                                                                                                    2. Classification Decision
                                                                                                      1. Hidden Layer
                                                                                                        1. transform
                                                                                                          1. Input
                                                                                                            1. into
                                                                                                              1. Out put
                                                                                                          2. Does
                                                                                                            1. The hard work of classification
                                                                                                            2. Aply the BIAS
                                                                                                              1. A fixed value to sum or subtract
                                                                                                                1. Random
                                                                                                                  1. when a neural network is created
                                                                                                                    1. an algorithm goes in and starts tweaking
                                                                                                                      1. All those values to train the neural network
                                                                                                                        1. using
                                                                                                                          1. Label data
                                                                                                                            1. For training and testing
                                                                                                                              1. a process very much like Human learning
                                                                                                            3. were invented
                                                                                                              1. over fifty years ago
                                                                                                        Show full summary Hide full summary

                                                                                                        0 comments

                                                                                                        There are no comments, be the first and leave one below:

                                                                                                        Similar

                                                                                                        German GCSE Vocab
                                                                                                        naomisargent
                                                                                                        An Gnáthrud
                                                                                                        xlauramartinx
                                                                                                        Food Vocabulary Quiz
                                                                                                        Liz Bartik
                                                                                                        Who was to blame for the Cold War?
                                                                                                        Will Barnes
                                                                                                        Biological Definitions
                                                                                                        Yamminnnn
                                                                                                        GCSE AQA Chemistry Atomic Structure and Bonding
                                                                                                        mustafizk
                                                                                                        Meiosis vs. Mitosis
                                                                                                        nvart00
                                                                                                        Basic English tenses
                                                                                                        Mariola Hejduk
                                                                                                        Ch. 2 Ancient Mesopotamia & Egypt
                                                                                                        msandovalbarrios
                                                                                                        Psychology Key Words Research Methods
                                                                                                        Alfie Moorhead