Aula 3 - Probabilidade

Description

Aula 3 - Probabilidade
Ygor Mazali Honorato
Mind Map by Ygor Mazali Honorato, updated more than 1 year ago
Ygor Mazali Honorato
Created by Ygor Mazali Honorato over 6 years ago
36
0

Resource summary

Aula 3 - Probabilidade
  1. Definição de espaço amostral
    1. Ferramenta: Análise Combinatória
      1. Experimento Simples
        1. Evento Elementar Simples
        2. Experimento Composto
          1. Evento Elementar Composto
            1. Mais de um evento simples
          2. Definição Espaço Amostral
            1. Amostra sem Reposição
              1. n (n-k+1) =Ω
              2. Amostra com Reposição
                1. nk : n elevado a k . Para n resultados de experimentos simples com k posições 62=36
                2. Problemas quando a ordem importa
                  1. Combinação – a ordem dos elementos não importa
                    1. Busca-se saber quantos conjuntos k podem ser formados a partir de um conjunto de n elementos
                      1. Cnk = n! / k! (n - k)!
                    2. Arranjo – a ordem dos elementos importa
                      1. n = Quantidade total de elementos no conjunto. k =Quantidade de elementos por arranjo (Sem Reposição)
                        1. n! / (n-k)!
                      2. Permutação – a ordem dos elementos importa
                        1. De quantas maneiras pode-se ordenar uma lista com n objetos. (Cargos para n pessoas)
                          1. n! (fatorial)
                3. Probabilidade Condicional
                  1. Def. Probabilidade de um evento dado que outro já ocorreu. Relacionado a interseção.
                    1. Dependência Condicional
                          1. Restrição Espaço Amostral - passa a ser definido por B e não mais por Ω
                              1. Definição do Espaço Amostral Usando Árvore de Probabilidades
                            1. Teorema das Probabilidades Totais
                                1. Espaço Amostral Particionado:condicionamento é uma situação em que o espaço amostral é particionado e o teorema das probabilidade totais é a soma dessas partições
                                      1. Regra da Multiplicação (∩)
                                        1. Fórmula de Poincaré (∪)
                                2. Independência Condicional
                                    1. Condição de Independência
                                    2. Teorema de Bayes
                                    Show full summary Hide full summary

                                    Similar

                                    Business Studies Unit 2
                                    tara.springate
                                    Blood brothers-Context
                                    umber_k
                                    Mechanics
                                    james_hobson
                                    BIOLOGY B1 7
                                    x_clairey_x
                                    Symbols in Lord of the Flies
                                    lowri_luxton
                                    Restless Earth Notes
                                    Gladys Mba
                                    Types and Components of Computer Systems
                                    Jess Peason
                                    PHR SPHR Labor Union Terminology
                                    Sandra Reed
                                    mcolby MITOSIS TEST
                                    Melinda Colby
                                    National 5 Biology: Cell Biology
                                    Mhairi McCann
                                    PSBD TEST # 3
                                    yog thapa