ESTRUCTURAS ALGEBRAICAS_1

Description

Mind Map on ESTRUCTURAS ALGEBRAICAS_1, created by Daniel PM on 14/11/2013.
Daniel PM
Mind Map by Daniel PM, updated more than 1 year ago More Less
cabt_america
Created by cabt_america about 11 years ago
Daniel PM
Copied by Daniel PM about 11 years ago
29
1

Resource summary

ESTRUCTURAS ALGEBRAICAS_1
  1. OPERACIONES BINARIAS Y SUS PROPIEDADES
    1. ESTRUCTURA DE GRUPO
      1. ESTTRUCTURAS DE ANILLO Y DE CAMPO
        1. ISOMORFISMOS Y HOMOMORFISMOS
          1. DEFINICIONES
            1. FUNCIONES
              1. INYECTIVA
                1. PARA CADA VALOR DE Y NO CORRESPONDE UN VALOR DE X
                2. SUPRAYECTIVA
                  1. PARA CADA VALOR DE Y PUEDEN EXISTIR UNO O MAS VALORES DE X
                  2. BIYECTIVA
                    1. PARA CADA VALOR DE Y EXISTE UN VALOR DE X
                3. ISOMORFISMOS
                  1. PROVIENE DE
                    1. ISO = MISMO MORFO= FORMA
                    2. EN FORMA SENCILLA ES
                      1. LA IDEA DE DOS SISTEMAS TAN PARECIDOS QUE PARECIERA QUE SON LOS MISMOS
                        1. EN UNA FUNCION BIYECTIVA
                          1. EJEMPLO
                      2. HOMOMORFISMOS
                        1. Es una función que preserva la estructura entre dos estructuras matemáticas relevantes.
                          1. UN ANILLO EN CONTRA DE UN CAMPO
                      3. Propiedades elementales de los grupos
                        1. Grupo
                          1. Sea el par (A ,* )
                            1. (A , *) es un grupo ó se define sobre A una estructura de grupo
                              1. * es asociativa.
                                1. Es decir Va, Vb, Vc, ε A: → (a*b)*c = a*(b*c)
                              2. Todo elemento de A es invertible en A respecto *
                                1. Es decir Va’ ε A, Ǝa’ ε A / a*a’ = e
                                2. Donde A es un conjunto no vacío dotado de una ley de composición interna binaria *
                              3. Subgupo
                                1. Un subconjunto no vacío B, del conjunto A es un subgrupo de ( A , ) si y solo sí ( B , ) es un grupo.
                                  1. Por ejemplo
                                    1. ( Z , + ) es un subgrupo de ( Q , + ).
                              Show full summary Hide full summary

                              Similar

                              Aggression mind-map for A2 AQA Psychology
                              poeticjustice
                              Health and Social Care
                              NicoleCMB
                              Weimar Revision
                              Tom Mitchell
                              BIOLOGY B1 3
                              x_clairey_x
                              Geography Restless Earth
                              sophieelizabeth
                              Statistics Key Words
                              Culan O'Meara
                              Mind Map 1_1
                              n.marment
                              Principios de Vuelo
                              Adriana Forero
                              Salesforce Admin 201 Exam Chunk 6 (156-179)
                              Brianne Wright
                              AAHI_Card set 2 (Escalation criteria)
                              Tafe Teachers SB
                              Mapa Mental para Resumir y Conectar Ideas
                              Ricardo Padilla Alcantara