ESTRUCTURAS ALGEBRAICAS_1

Description

Mind Map on ESTRUCTURAS ALGEBRAICAS_1, created by Daniel PM on 14/11/2013.
Daniel PM
Mind Map by Daniel PM, updated more than 1 year ago More Less
cabt_america
Created by cabt_america over 11 years ago
Daniel PM
Copied by Daniel PM over 11 years ago
32
1
1 2 3 4 5 (0)

Resource summary

ESTRUCTURAS ALGEBRAICAS_1
  1. OPERACIONES BINARIAS Y SUS PROPIEDADES
    1. ESTRUCTURA DE GRUPO
      1. ESTTRUCTURAS DE ANILLO Y DE CAMPO
        1. ISOMORFISMOS Y HOMOMORFISMOS
          1. DEFINICIONES
            1. FUNCIONES
              1. INYECTIVA
                1. PARA CADA VALOR DE Y NO CORRESPONDE UN VALOR DE X
                2. SUPRAYECTIVA
                  1. PARA CADA VALOR DE Y PUEDEN EXISTIR UNO O MAS VALORES DE X
                  2. BIYECTIVA
                    1. PARA CADA VALOR DE Y EXISTE UN VALOR DE X
                3. ISOMORFISMOS
                  1. PROVIENE DE
                    1. ISO = MISMO MORFO= FORMA
                    2. EN FORMA SENCILLA ES
                      1. LA IDEA DE DOS SISTEMAS TAN PARECIDOS QUE PARECIERA QUE SON LOS MISMOS
                        1. EN UNA FUNCION BIYECTIVA
                          1. EJEMPLO
                      2. HOMOMORFISMOS
                        1. Es una función que preserva la estructura entre dos estructuras matemáticas relevantes.
                          1. UN ANILLO EN CONTRA DE UN CAMPO
                      3. Propiedades elementales de los grupos
                        1. Grupo
                          1. Sea el par (A ,* )
                            1. (A , *) es un grupo ó se define sobre A una estructura de grupo
                              1. * es asociativa.
                                1. Es decir Va, Vb, Vc, ε A: → (a*b)*c = a*(b*c)
                              2. Todo elemento de A es invertible en A respecto *
                                1. Es decir Va’ ε A, Ǝa’ ε A / a*a’ = e
                                2. Donde A es un conjunto no vacío dotado de una ley de composición interna binaria *
                              3. Subgupo
                                1. Un subconjunto no vacío B, del conjunto A es un subgrupo de ( A , ) si y solo sí ( B , ) es un grupo.
                                  1. Por ejemplo
                                    1. ( Z , + ) es un subgrupo de ( Q , + ).
                              Show full summary Hide full summary

                              0 comments

                              There are no comments, be the first and leave one below:

                              Similar

                              G481 Mechanics Definitions
                              nikeishabk
                              GCSE Chemistry C1 - Carbon Chemistry ATOMS, MOLECULES AND COMPOUNDS (Easy)
                              T W
                              AQA Sociology AS level
                              rhian-hay
                              Advantages + disadvantages of sociology research methods
                              08dobson
                              Strengths and Weaknesses of Psychological Approaches
                              Robyn Chamberlain
                              River Landscapes
                              Chima Power
                              C1 B1 & P1 Test
                              jodie00
                              Forms of Business Ownership Quiz
                              Noah Swanson
                              AQA A2 Biology Unit 5 Chapter 11: Muscle Contraction
                              Charlotte Lloyd
                              Mapa Mental para Resumir y Conectar Ideas
                              Rosario Sharline Vilcarromero Saenz