Derivadas

Description

The different formulas for deriving functions.
Roxy Hughes
Mind Map by Roxy Hughes, updated more than 1 year ago
Roxy Hughes
Created by Roxy Hughes almost 10 years ago
48
2

Resource summary

Derivadas
  1. Reglas de derivación elementales
    1. d/dx c = 0
      1. La derivada de una constante es 0
      2. d/dx cx = c
        1. La derivada de una constante c, por x es la constante. Por lo tanto: la derivada de una recta y = mx + b, es igual a su pendiente, m.
        2. d/dx cx^n = ncx^n-1
          1. d/dx mr)x^n = d/dx x^n/m = n/m x^(n/m)-1
            1. d/dx [g(x)]^n = n[g(x)]^n-1 * d/dx g(x)
              1. Función de funciones
              2. d/dx [g(x) +- h(x)] = g'(x) +- h'(x)
                1. La derivada de la suma o resta de dos (o más) funciones es la suma de sus derivadas.
                2. d/dx [g(x)h(x)] = g(x)h'(x) + h(x)g'(x)
                  1. Producto de dos funciones
                  2. d/dx g(x)/h(x) = [h(x)g'(X) - g(x)h'(x)] / [h(x)]^2
                    1. Cociente de dos funciones
                  3. d/dx = f'(x) = y'
                    1. f' (x)
                      1. 1ra derivada
                      2. f" (x)
                        1. 2da derivada
                      3. Reglas de derivación de funciones transcendentes
                        1. d/dx lnu = 1/u d/dx u
                          1. d/dx logv = loge/v d/dx v
                            1. d/dx a^u = a^u lna d/dx u
                              1. d/dx e^v = e^v d/dx v
                                1. d/dx senu = cosu d/dx u
                                  1. d/dx cosv = -senv d/dx v
                                    1. d/dx tanu =sec^2 u d/dx u
                                      1. d/dx cotv = -csc^2 v d/dx v
                                        1. d/dx secu = secu tanu d/dx u
                                          1. d/dx cscv = -cscv ctgv d/dx v
                                            1. d/dx arcsenu = 1/[sqr(1-u^2)] d/dx u
                                              1. d/dx arccosv = -1/[sqr(1-v^2)] d/dx v
                                                1. d/dx arctanu = 1/[1 + u^2] d/dx u
                                                  1. arccotv = -1/[1 + v^2] d/dx v
                                                    1. d/dx arcsecu = 1/[u sqr(u^2 -1)] d/dx u
                                                      1. d/dx arccscv = -1/[v sqr(v^2 -1)] d/dx v
                                                      Show full summary Hide full summary

                                                      Similar

                                                      Limits AP Calculus
                                                      lakelife62
                                                      Basic Derivative Rules
                                                      Bill Andersen
                                                      Calculus
                                                      natz994
                                                      Integration Techniques
                                                      Rob Grondahl
                                                      Calculus II Improper Integrals
                                                      Anthony Campos
                                                      Techniques of Integration
                                                      hamidymuhammad
                                                      STRATEGY OF INTEGRATION
                                                      intan_syahirah97
                                                      Series Strategy
                                                      Rob Grondahl
                                                      Mathematicalproving
                                                      Sharifah Huda
                                                      wodb #2 Calculus
                                                      Susan Robinson
                                                      ECO 319 - Quantitative Analysis I - Exam 1 Practice
                                                      LemonKing