Teoría de Gráficas

Description

Mind Map on Teoría de Gráficas, created by richy.mac2014 on 11/02/2015.
richy.mac2014
Mind Map by richy.mac2014, updated more than 1 year ago
richy.mac2014
Created by richy.mac2014 almost 10 years ago
139
1

Resource summary

Teoría de Gráficas
  1. Grafos G(V,A) V=Vértices A=Aristas
    1. Tipos de Grafos
      1. Grafos Completos (Kn)
        1. Tienen vértices adyacentes entre sí y n(n-1)/2 aristas.
          1. Caminos Simples
          2. Caminos Simples (Pn)
            1. Son grafos lineales sin ciclos, tienen n vértices y n-1 aristas
            2. Gráfica Dirigida
              1. Las aristas que unen a los nodos tienen una dirección representada por flechas
                1. Digráfica Simple
                  1. No contiene búcles ni líneas paralelas
                    1. Tiene n vértices y k componentes y tiene a lo más (n-k)(n-k+1) líneas
                    2. Digráfica Simétrica
                      1. Por cada arco que une a los nodos Vi a Vj existe uno que los une de Vj a Vi.
                      2. Digráfica Completa
                        1. Se denota como DKn donde n es el número de nodos y todos sus nodos tienen arcos paralelos de ida y regreso.
                        2. Digráfica Asimétrica Completa
                          1. También llamada "Torneo completo" y para cada par de nodos existe una linea dirigida
                            1. Tiene n(n-1)/2 líneas
                            2. Digráfica Regular
                              1. Es de grado (i, e) donde todos los nodos tienen el mismo grado interno y externo
                              2. Digráfica Balanceada
                                1. Cada nodo tiene grado interno = externo
                            3. Bosques
                              1. Conformada por varios árboles
                                1. Los árboles son gráficas simples conectadas sin circuitos
                                  1. Árbol Binario
                                    1. tiene un vértice de grado 2 y los restantes son de grado 1 o 3
                                    2. Árbol Estrictamente Binario
                                      1. Cada nodo tiene 0, 1 o 2 hijos
                                2. Subgráficas
                                  1. Todos los vértices de g están contenidos en G y cada línea de g tiene los mismos vértices de terminales en G
                                  2. Gráfica Bipartita
                                    1. El conjunto de vértices puede dividirse en dos subconjuntos donde las vértices de un subconjunto no deben ser adyacentes a los elementos del otro subconjunto
                                    2. Gráfica Bipartita Completa
                                      1. Todos los nodos de un subconjunto son adyacentes los nodos del otro subconjunto
                                      2. Multigrafo o Pseudografo
                                        1. Tiene líneas paralelas y búcles
                                      3. Tamaño de G: Es el número de aristas que tiene una gráfica
                                        1. Orden de G: Es el número de nodos que tiene una gráfica
                                          1. Trivial. Gráfica que consta de un sólo nodo
                                          2. Incidencia y Adyacencia
                                            1. Un nodo es terminal de un arco, el nodo incide en el arco o la línea incide en él
                                              1. Dos arcos no paralelos son incidentes de un nodo en común o dos nodos comparten una línea, son adyacentes
                                            2. Teoremas
                                              1. Havel Hakimi
                                                1. Lema del apretón de manos
                                                  1. Nodos de grado impar son par
                                                    1. Nodos aislados son de grado 0
                                                      1. Nodos de grado 1 son colgantes
                                                      2. Gráfica desconectada
                                                        1. Gráfica simple de n vertices y k subconjuntos
                                                          1. Tiene a lo más (n-k)(n-k+1)/2 líneas
                                                        Show full summary Hide full summary

                                                        Similar

                                                        Periodic Table
                                                        PatrickNoonan
                                                        Fractions and percentages
                                                        Bob Read
                                                        GCSE English Literature: Of Mice and Men
                                                        mia.rigby
                                                        Hitler's Chancellorship
                                                        c7jeremy
                                                        AS Psychology Unit 1 - Memory
                                                        Asterisked
                                                        Marriage and Family Life - Edexcel GCSE Religious Studies Unit 3
                                                        nicolalennon12
                                                        Rights and Responsibilities Flashcards - Edexcel GCSE Religious Studies Unit 8
                                                        nicolalennon12
                                                        Plant and animal cells
                                                        Tyra Peters
                                                        Cloud Data Integration Specialist Certification
                                                        James McLean
                                                        1_PSBD New Edition
                                                        Ps Test
                                                        HEMORRAGIAS - OBST PATOLOGICA
                                                        María José Alvarez Gazzano