1_las leyes de newton

Description

Décimo Física Mind Map on 1_las leyes de newton, created by mateo silva perez on 21/10/2016.
mateo silva perez
Mind Map by mateo silva perez, updated more than 1 year ago More Less
mateo silva perez
Created by mateo silva perez almost 8 years ago
mateo silva perez
Copied by mateo silva perez over 7 years ago
1
0

Resource summary

1_las leyes de newton

Annotations:

  • leyes de newton
  1. Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican una gran parte de los problemas planteados en mecánica clásica, en particular aquellos relativos al movimiento de los cuerpos, que revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.
    1. la historia
      1. La dinámica es la parte de la física que estudia las relaciones entre los movimientos de los cuerpos y las causas que los provocan, en concreto las fuerzas que actúan sobre ellos. La dinámica, desde el punto de vista de la mecánica clásica, es apropiada para el estudio dinámico de sistemas grandes en comparación con los átomos y que se mueven a velocidades mucho menores que las de la luz.3 Para entender estos fenómenos, el punto de partida es la observación del mundo cotidiano. Si se desea cambiar la posición de un cuerpo en reposo es necesario empujarlo o levantarlo, es decir, ejercer una acción sobre él.
    2. Fundamentos teóricos de las leyes
      1. El primer concepto que maneja Newton es el de masa, que identifica con "cantidad de materia". Newton asume a continuación que la cantidad de movimiento es el resultado del producto de la masa por la velocidad. En tercer lugar, precisa la importancia de distinguir entre lo absoluto y relativo siempre que se hable de tiempo, espacio, lugar o movimiento. En este sentido, Newton, que entiende el movimiento como una traslación de un cuerpo de un lugar a otro, para llegar al movimiento absoluto y verdadero de un cuerpo
        1. Las leyes enunciadas por Newton, y consideradas como las más importantes de la mecánica clásica, son tres: la ley de inercia, la relación entre fuerza y aceleración y la ley de acción y reacción. Newton planteó que todos los movimientos se atienen a estas tres leyes principales, formuladas en términos matemáticos. Un concepto es la fuerza, causa del movimiento y otro es la masa, la medición de la cantidad de materia puesta en movimiento; los dos son denominados habitualmente por las letras F y m.
      2. Primera ley de Newton o ley de inercia
        1. Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuya resultante no sea nula. Newton toma en consideración, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como tal a la fricción.
          1. el enunciado fundamental de la primera ley de newton
            1. El enunciado fundamental que podemos extraer de la ley de Newton es que la F:m*a . Esta expresión es una ecuación vectorial, ya que tanto la fuerza como la aceleración llevan dirección y sentido. Por otra parte, cabe destacar que la aceleración no es la variación de la posición, sino que es la variación con la que varía la velocidad. De la ecuación F:m*a podemos deducir que si actúan fuerzas sobre los cuerpos, el cambio que se provoca en su aceleración es proporcional a la fuerza aplicada y dicho cambio se produce en la dirección sobre la que se apliquen dichas fuerzas.
          2. sistema de referencias inerciales
            1. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como sistemas de referencia inerciales, que son aquellos desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante. Un sistema de referencia con aceleración (y la aceleración normal de un sistema rotatorio se incluye en esta definición) no es un sistema inercial, y la observación de una partícula en reposo en el propio sistema no satisfará las leyes de Newton (puesto que se observará aceleración sin la presencia de fuerza neta alguna). Se denominan sistemas de referencia no inerciales.
          3. Aplicación de la primera ley de Newton
            1. Se puede considerar como ejemplo ilustrativo de esta primera ley una bola atada a una cuerda, de modo que la bola gira siguiendo una trayectoria circular. Debido a la fuerza centrípeta de la cuerda (tensión), la masa sigue la trayectoria circular, pero si en algún momento la cuerda se rompiese, la bola tomaría una trayectoria rectilínea en la dirección de la velocidad que tenía la bola en el instante de rotura
              1. Tras la rotura, la fuerza neta ejercida sobre la bola es 0, por lo que experimentará, como resultado de un estado de reposo, un movimiento rectilíneo uniforme.
            2. Segunda ley de Newton o ley fundamental de la dinámica
              1. Esta ley se encarga de cuantificar el concepto de fuerza. La aceleración que adquiere un cuerpo es proporcional a la fuerza neta aplicada sobre el mismo. La constante de proporcionalidad es la masa del cuerpo (que puede ser o no ser constante). Entender la fuerza como la causa del cambio de movimiento y la proporcionalidad entre la fuerza impresa y el cambio de la velocidad de un cuerpo es la esencia de esta segunda ley
                1. Si la masa es constante
                  1. Si la masa del cuerpo es constante se puede establecer la siguiente relación, que constituye la ecuación fundamental de la dinámica:
                    1. Donde m es la masa del cuerpo la cual debe ser constante para ser expresada de tal forma. La fuerza neta que actúa sobre un cuerpo, también llamada fuerza resultante, es el vector suma de todas las fuerzas que sobre él actúan. Así pues:
                      1. El principio de superposición establece que si varias fuerzas actúan igual o simultáneamente sobre un cuerpo, la fuerza resultante es igual a la suma vectorial de las fuerzas que actúan independientemente sobre el cuerpo (regla del paralelogramo). Este principio aparece incluido en los Principia de Newton como Corolario 1, después de la tercera ley, pero es requisito indispensable para la comprensión y aplicación de las leyes, así como para la caracterización vectorial de las fuerzas.14 La fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. Las fuerzas son causas que producen aceleraciones en los cuerpos. Por lo tanto existe una relación causa-efecto entre la fuerza aplicada y la aceleración que se este cuerpo experimenta.De esta ecuación se obtiene la unidad de medida de la fuerza en el Sistema Internacional de Unidades, el Newton:
                        1. Por otro lado, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de esta (debido a que la masa siempre es un escalar positivo). La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista (la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad).
                    2. si la masa no es constante
                      1. Si la masa de los cuerpos varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F:m*v y hay que hacer genérica la ley para que incluya el caso de sistemas en los que pueda variar la masa. Para ello primero hay que definir una magnitud física nueva, la cantidad de movimiento, que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir: P:m*V
                        1. Newton enunció su ley de una forma más general:Fneta :m d(mv)/dt
                          1. De esta forma se puede relacionar la fuerza con la aceleración y con la masa, sin importar que esta sea o no sea constante. Cuando la masa es constante sale de la derivada con lo que queda la expresión:Fneta:m(d(v)/dt)
                            1. Y se obtiene la expresión clásica de la Segunda Ley de Newton:Fneta:m.a
                              1. La fuerza, por lo tanto, es un concepto matemático el cual, por definición, es igual a la derivada con respecto al tiempo del momento de una partícula dada, cuyo valor a su vez depende de su interacción con otras partículas. Por consiguiente, se puede considerar la fuerza como la expresión de una interacción. 0:dp/dt
                                1. Es decir, la derivada de la cantidad de movimiento con respecto al tiempo es cero en sus tres componentes. Esto significa que la cantidad de movimiento debe ser constante en el tiempo en módulo dirección y sentido (la derivada de un vector constante es cero).
                        2. Cantidad de movimiento o momento lineal
                          1. En el lenguaje moderno la cantidad de movimiento o momento lineal de un objeto se define mediante la expresión F:m*v Es decir, es una magnitud vectorial proporcional a la masa y a la velocidad del objeto. Partiendo de esta definición y aplicando la ley fundamental de la mecánica de Newton, las variaciones de la cantidad de movimiento se expresan en función de la fuerza resultante y el intervalo de tiempo durante el cual se ejerce esta:
                            1. F result=m*a=m d(v)/dt F result*dt=m*dv=d (m*v)=dp
                              1. Al vector F reuslt* dt se le denomina impulso lineal y representa una magnitud física que se manifiesta especialmente en las acciones rápidas o impactos, tales como choques, llevando módulo dirección y sentido. En este tipo de acciones conviene considerar la duración del impacto y la fuerza ejercida durante el mismo.
                        3. Conservación de la cantidad de movimiento
                          1. Choque elástico: permanecen constantes la cantidad de movimiento y la energía cinética. Dos partículas de masas diferentes que solo interactúan entre sí y que se mueven con velocidades constantes y distintas una hacia la otra.
                          2. Choque inelástico: permanece constante la cantidad de movimiento y varía la energía cinética. Como consecuencia, los cuerpos que colisionan pueden sufrir deformaciones y aumento de su temperatura. Tras un choque totalmente inelástico, ambos cuerpos tienen la misma velocidad.
                          3. Tercera ley de Newton o principio de acción y reacción
                            1. La tercera ley de Newton establece que siempre que un objeto ejerce una fuerza sobre un segundo objeto, este ejerce una fuerza de igual magnitud y dirección pero en sentido opuesto sobre el primero. Con frecuencia se enuncia así: A cada acción siempre se opone una reacción igual pero de sentido contrario. En cualquier interacción hay un par de fuerzas de acción y reacción situadas en la misma dirección con igual magnitud y sentidos opuestos
                              1. Esta tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otra manera por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.19 Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto. Si dos objetos interaccionan, la fuerza F12, ejercida por el objeto 1 sobre el objeto 2, es igual en magnitud con misma dirección pero sentidos opuestos a la fuerza F21 ejercida por el objeto 2 sobre el objeto 1 F12=-F21
                              2. Aplicaciones de la Tercera Ley de Newton
                                1. Algunos ejemplos donde actúan las fuerzas acción-reacción son los siguientes
                                  1. 1)Si una persona empuja a otra de peso similar, las dos se mueven con la misma velocidad pero en sentido contrario. 2)Cuando saltamos, empujamos a la tierra hacia abajo, que no se mueve debido a su gran masa, y esta nos empuja con la misma intensidad hacia arriba. 3)Una persona que rema en un bote empuja el agua con el remo en un sentido y el agua responde empujando el bote en sentido opuesto. 4)Cuando caminamos empujamos a la tierra hacia atrás con nuestros pies, a lo que la tierra responde empujándonos a nosotros hacia delante, haciendo que avancemos. 5)Cuando se dispara una bala, la explosión de la pólvora ejerce una fuerza sobre la pistola (que es el retroceso que sufren las armas de fuego al ser disparadas), la cual reacciona ejerciendo una fuerza de igual intensidad pero en sentido contrario sobre la bala.
                                    1. La fuerza de reacción (flecha verde) aumenta conforme aumenta la aplicada al objeto, la fuerza aplicada (flecha roja)
                                2. La fuerza que ejerce la Tierra sobre la Luna es exactamente igual (y de signo contrario) a la que ejerce la Luna sobre la Tierra y su valor viene determinado por la ley de gravitación universal enunciada por Newton, que establece que la fuerza que ejerce un objeto sobre otro es directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que los separa. La fuerza que la Tierra ejerce sobre la Luna es la responsable de que esta no se salga de su órbita circular.
                                  1. Además, la fuerza que la Luna ejerce sobre la Tierra es también responsable de las mareas, pues conforme la Luna gira alrededor de la Tierra esta ejerce una fuerza de atracción sobre la superficie terrestre, la cual eleva los mares y océanos, elevando varios metros el nivel del agua en algunos lugares; por este motivo esta fuerza también se llama fuerza de marea. La fuerza de marea de la luna se compone con la fuerza de marea del sol proporcionando el fenómeno completo de las mareas.
                                  2. Limitaciones y generalizaciones posteriores
                                    1. Después de que Newton formulara las tres famosas leyes, numerosos físicos y matemáticos hicieron contribuciones para darles una forma más general o de más fácil aplicación a sistemas no inerciales o a sistemas con ligaduras. Una de estas primeras generalizaciones fue el principio de d'Alembert de 1743 que era una forma válida para cuando existieran ligaduras que permitía resolver las ecuaciones sin necesidad de calcular explícitamente el valor de las reacciones asociadas a dichas ligaduras
                                    2. Generalizaciones relativistas
                                      1. Primera ley, en ausencia de campos gravitatorios no requiere modificaciones. En un espacio-tiempo plano una línea recta cumple la condición de ser geodésica. En presencia de curvatura en el espacio-tiempo la primera ley de Newton sigue siendo correcta si sustituimos la expresión línea recta por línea geodésica.
                                        1. Segunda ley. Sigue siendo válida si se dice que la fuerza sobre una partícula coincide con la tasa de cambio de su momento lineal. Sin embargo, ahora la definición de momento lineal en la teoría newtoniana y en la teoría relativista difieren. En la teoría newtoniana el momento lineal se define según (1a) mientras que en la teoría de la relatividad de Einstein se define mediante
                                          1. Tercera Ley de Newton. La formulación original de la tercera ley por parte de Newton implica que la acción y reacción, además de ser de la misma magnitud y opuestas, son colineales. En esta forma la tercera ley no siempre se cumple en presencia de campos magnéticos.
                                        2. aplicaciones de la segunda ley de newton
                                          1. Caída libre: es un movimiento que se observa cuando un objeto se deja caer desde una cierta altura sobre la superficie de la tierra. Para estudiar el movimiento se elige un sistema de coordenadas donde el origen del eje y está sobre esta última. En este sistema tanto la velocidad de caída como la aceleración de la gravedad tienen signo negativo.
                                            1. Péndulo simple: partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición θ0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar.
                                            Show full summary Hide full summary

                                            Similar

                                            Tarea 1 - La Naturaleza de la Electricidad
                                            Paula Andrea
                                            Mecànica
                                            Rafel Juanola
                                            Penisola balcanica: fisica
                                            Siria Giacomelli
                                            Leyes del movimiento
                                            Pablo Salgado
                                            ¿Algún proceso vital involucra electricidad? | Actividad II - Física.
                                            Joseline Paola Mar Fernández
                                            ECONOMÍA Y SU RELACION CON OTRAS CIENCIAS
                                            David Zepeda
                                            OSCILACIÓN
                                            yoiner idrobo
                                            El calor y la temperatura
                                            Carlos Salas
                                            Francia: fisica
                                            Mattia Depaul
                                            Temperatura
                                            yoiner idrobo